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Abstract

Foundation models such as ChatGPT are poised to trans-

form society by providing general intelligence for problem-

solving in healthcare, education, and law. They are also

expected to make dramatic impacts in the way of AI solving

spatiotemporal tasks in the physical world, such as smart

manufacturing, intelligent transportation, and Earth sys-

tem modeling. However, one major handicap is that ex-

isting foundation models do not understand the spatiotem-

poral knowledge of the physical world, leading to unex-

pected model behaviors and significant safety risks. This

paper discusses emerging opportunities and unique chal-

lenges in integrating foundation models with physical com-

ponents for solving spatiotemporal tasks. We also iden-

tify several new research directions to enhance the safety of

such integrated models by spatiotemporal-knowledge-guided

in-context-learning, verification, safety alignment, and the

development of physics-informed geo-foundation models, as

well as new benchmarking datasets and evaluation metrics.

1 Introduction

A foundation model is a large deep neural network
model trained on a vast quantity of data at scale (of-
ten by self-supervised or semi-supervised learning) such
that it can be easily adapted to a wide range of down-
stream tasks [5, 8, 24, 20]. Foundation models (e.g.,
ChatGPT) are poised to transform our society by pro-
viding general intelligence in healthcare, education, and
law [5]. More importantly, they are also expected to
make dramatic impacts in the way of AI solving spa-
tiotemporal tasks in the physical world. For example, a
foundation model, when integrated with a digital map
engine as a plugin, can provide more intelligent location-
based services, e.g., planning a week-long road trip from
Orlando, Florida to Long Beach, California that passes
through five national parks and a stop at a historical
landmark. Similarly, a foundation model can translate
a user’s task in natural language into executable pro-
grams to control a robot [25] or call a physical simula-
tor. Traditionally, such tasks are often solved by cus-
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Plan a week-long road trip route from 

Orlando, Florida to Los Angeles, California 

that passes through 3 national parks and one 

historical tourism site.

Foundation 
Model

Spatiotemporal Task Instructions

Robot, head to Room 5, and retrieve the 

high-priority package. Once done, proceed 

to Charging Station 3 for a quick recharge. 

Avoid the busy central corridor and go to 

Restock Zone B.

I live at 2800 SW 35TH PL, Gainesville, 

Florida and there's a hurricane coming. Will 

it impact my home? If so, guide me on the 

safest evacuation routes.

Figure 1: A vision of Emerging Opportunities.

tomized programs for a narrowly defined set of tasks. A
program needs to be re-configured for a new task. Foun-
dation models are transformative in that they provide a
general and intelligent interface that can take complex
tasks from multiple domains.

However, one major handicap is that foundation
models lack genuine understanding and reasoning of
spatiotemporal knowledge of the physical world. There-
fore, it can generate results that appear plausible but
are spurious (hallucination [28]). For example, it has
been found that a large language model can provide in-
correct answers for physical reasoning questions such as
if objects fall proportionately to their weight [16]. As
another example in intelligent transportation, a founda-
tion model may face difficulties in spatial reasoning be-
tween locations and recommend incorrect routes based
on complex user requirements. The consequences are
dire in high-stake decision-making applications such as
evacuation planning.

A fundamental question is how to ground a foun-
dation model with the physical knowledge of the world
so that it can solve spatiotemporal tasks with safety
assurance. Our vision is that addressing this ques-
tion requires not only integrating a foundation model
with physical engine plugins but also grounding physi-
cal knowledge into the foundation model pipeline (e.g.,
spatiotemporal-knowledge-guided prompt, alignment or
fine-tuning, outcome verification).

2 Emerging Opportunities

Figure 1 illustrates emerging opportunities for founda-
tion models in solving spatiotemporal tasks in the phys-
ical world. The key idea is to integrate a foundation
model with a physical engine plugin, such as a robot,
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a high-definition map engine, or physical simulators of
the Earth system processes (or its AI surrogate) [18]. A
spatiotemporal task description is first translated into
physical commands, e.g., step-wise robotic commands,
atomic map queries, or configuration files for physical
simulators. The physical engine will execute the com-
mands and provide solutions or take action.

2.1 Robotic Planning and Control Code Gen-
eration. Traditionally, robotic planning and control re-
lied on experts to design specific rules and algorithms,
such as instructing a robot to stack boxes. However,
these algorithms often struggled with variations, such
as different box sizes or stacking multiple boxes [13].
There are emerging methods that use foundation mod-
els to generate robotic planning and decision-making
codes [1]. With users input details, the model will gener-
ate customized robotic programs. Recent research pro-
poses foundation models with Planning Domain Defi-
nition Language (PDDL), a common abstract language
for automated planning and scheduling, through chain-
of-thoughts [26] and automated debugging [23].

2.2 Intelligent location-based services. In the
current practice, location-based services are imple-
mented by customized geospatial data management and
mining algorithms for narrowly defined tasks. For ex-
ample, one can find nearby restaurants or hotels with
several predefined filters (e.g., price, cuisine, customer
ratings) or find the fastest route from one location
to another. In contrast, integrating foundation mod-
els, digital map engines, and GIS technologies provides
new opportunities to provide broader and more com-
plex location-based services. For example, one can ask
a virtual assistant on an electrical vehicle to find a route
from work to home with a stop at 6:30 p.m. for dinner
at an Italian restaurant and a walk in a nearby mall.

2.3 AI-enabled Earth engine assistant. The cur-
rent foundation models can only solve relatively
straightforward problems about the Earth, such as the
longest river or the highest mountain in the world. They
are unable to answer more complex questions such as the
flood inundation maps near my house in the next few
hours, or the anticipated sea level rise in Florida coasts
in the upcoming decades. Solving such problems re-
quires numerical simulation models of the Earth system
processes (or their AI surrogates) fused with observation
data. However, existing models are often developed in
silos for specific tasks. Foundation models can poten-
tially provide a generic interface to interact with a suite
of different Earth system models by translating a user’s
question into configuration files. For example, when a

user asks for the forecasted flood inundation extent near
his beach house in the next 24 hours, a foundation model
can translate this question into configuration files to run
a regional ocean circulation model (for storm surge) and
an inundation model (for flood inundation extent).

3 Novel Technical Challenges

Several new technical challenges exist for foundation
models to solve physical tasks.

First, existing foundation models are typically pre-
trained on large historical datasets comprising texts and
images (videos). How to extend the models to geospatial
and spatiotemporal data, which exhibit unique formats
(e.g., geometric points, polylines, polygons, and Geo-
Raster layers) and characteristics (e.g., spatiotemporal
autocorrelation, heterogeneity) is non-trivial.

Second and more importantly, foundation models
are trained without an understanding of the physical
knowledge. Grounding foundation models with physi-
cal knowledge is critical to avoid fatal mistakes in high-
stake spatiotemporal applications, such as disaster re-
sponse. For instance, integrating physical knowledge
(e.g., conservation laws) could improve a geo-foundation
model’s ability to simulate the dynamics of floods or
storm surges. However, this is non-trivial due to the
size, complexity, and black-box nature of foundation
models, the difficulties in model retraining and fine-
tuning, and the need for a good representation of phys-
ical knowledge.

Third, a foundation model may generate incorrect
solutions in an over-confident manner (hallucination),
which can be misleading. There is a need to develop
approaches to quantify the uncertainty of the outputs
from a foundation model as well as approaches for safety
verification and alignment.

4 Future Research Directions

Figure 2 illustrates our vision of how to ground spa-
tiotemporal knowledge into foundation models (e.g.,
Large Language Models and Geo-Foundation Mod-
els [17]). We identify several future research directions.

4.1 Spatiotemporal-Knowledge-Guided In-
Context Learning, Model Verification, and
Alignment. Research has found that proper prompt-
ing plays a crucial role in retrieving effective answers
from a foundation model. For example, adding few-shot
examples to break down a complex task into subtasks,
also called chain-of-thoughts (COT), is beneficial [26].
For complex tasks in the physical world, task decompo-
sition requires spatiotemporal logical reasoning beyond
the simple COT. Traditionally, task decomposition in
robotic planning relied heavily on human expertise.
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Figure 2: Our envisioned framework of physics-grounded foundation models for spatiotemporal tasks.

We envision a more rigorous prompting framework
through formal logical reasoning. Linear temporal logic
(LTL) [3] uses a set of rules to encode our understanding
of how to fulfill the task and systematically use these
rules to break down the tasks, enabling automated task
reasoning and algorithm development. For applications
where well-defined logic expression and decomposition
are unavailable, we may resort to data mining (e.g.,
spatial decision trees [12]) to learn logic from human
demonstrations.

Another direction for the safety assurance of foun-
dation models in physical tasks is formal verification and
safety alignment [21]. It is well-known that the behavior
of foundation models may not always align with the in-
tended user intent. The primary solution is fine-tuning
the models through reinforcement learning with human
feedback (RLHF) [2]. However, collecting human feed-
back is much more difficult for physical tasks compared
with common question-answering. One potential direc-
tion is to replace human feedback with physical laws and
constraints (e.g., conservation law, formal logic). Re-
cent advancements in reinforcement learning methods
allow for direct integration with logical expressions [7].
When combined with existing RLHF techniques, these
methods can improve the alignment of pre-trained foun-
dation models across a range of applications. Similarly,
formal verification can inform the fine-tuning process if
misalignments are detected [11].

4.2 Physics-Informed Geo-Foundation Model
There are several recent works on extending foundation
models from computer vision to geo-domains with Earth
imagery as well as climate and weather simulations,
such as IBM-NASA Prithvi [10] and Microsoft Clima-
teX [19]. However, the model architecture itself is still
based on the common vision transformer (ViT), which
does not incorporate physical knowledge and constraints
in model training. Although there exists extensive re-
search in physics-informed machine learning in the lit-
erature [14, 27], direct application of these methods to
foundation models is non-trivial. For instance, due to
the size, complexity, and black-box nature of founda-

tion models, once they are pre-trained, it is difficult
to re-train and fine-tune. One potential strategy could
be exploring parameter-efficient fine-tuning (PEFT) [9]
with physical knowledge integrated into the loss func-
tion. Another strategy is to apply physics-guided post-
processing of model outputs.

4.3 Benchmarking datasets and evaluation
metrics. Another important direction is to develop
new benchmark datasets for physics-grounded founda-
tion models. For example, the Sen1Floods11 [6] dataset
is used to evaluate the IBM-NASA geo-foundation
model in flood inundation mapping, but the dataset
only labels flood pixels with exposed water surface with-
out considering the complete flood extent, especially
those pixels obscured by obstacles like tree canopies.
It is important to design a benchmarking dataset that
labels the complete flood pixels based on the physics
of water flows on terrain. For intelligent location-based
services, existing benchmarking datasets such as the Ge-
ographical Question Answer set [22] only pose straight-
forward queries about spatial object relationships. It
is necessary to develop a benchmark dataset with more
comprehensive and complex queries. In robotics, there
are existing open challenges in robotic planning and
control in open-world scenarios, e.g., DARPA Robotics
Challenge [15] and the Robo World Cup [4]. Evaluation
metrics should reflect the consistency between a model’s
outputs with physical constraints.
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