ORACLE

ORACLE

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute 3

Persistence

E» java 8

E» Lambdas

E» Infiltrating Lambdas
E» Streams

) Continuous Demo...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Java 8

* Released 03/2014!

* Lambdas

* Streams

* Improvements to G1

* Default methods

* Date / Time improvements

 Nashorn

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas

* Introduce functions as a first class citizen to the language

* Facilitates functional programming constructs

* Any interface or class with a Single Abstract Method can be defined as a
Lambda

* Last expression is the return argument (non-void methods)

e Surrounding arguments can be captured

* A reference to a method (including constructors) can be captured as a
Lambda

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas

Supplier<String> () =
Consumer<String> : sIn -> System.out.println(sIn);
Function<String, Integer> i sIn -> Integer.parseInt(sin);

Predicate<String>) = sIn -=> s.equals();

BiConsumer<String, Integer> b (sIn, nIn) -> System.out.printin(sIn + nIn);

BiFunction<String, Integer, Integer> D (sIn, nIn) -> Integer.parseInt(sIn) + nIn;

BinaryOperator<Integer> DT] (nInl, nIn2) => nInl + nIn2;

BiPredicate<String, Integer> by (sIn, nIn) -> sIn.equals(

Supplier<String> et (e , Person: :getConstant;
Function<Person, String> hGetFirstNai Person::getFirstName;
Supplier<Person> hCol Person::i

BiFunction<String, Integer, Person> mhCons2 Person::

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas

String sMatch = -
Predicate<String> p. sIn -=> s.equals(sMatch);

List<String> listHarNames = new ArraylList<(listNames.size());
ListNames. forEach(sName ->
{
(sName.startsWith())
{

listHarNames.add(sName) ;

Map<String, Long> map = new HashMap<();
map. computeIfAbsent(, SKey => veryExpensiveOp(sKey));

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas — under the hood

* Compiler converts lambda expression into a number of parts:

CapturingClass T » LambdaMetaFactory.altMetaFactory

Generated
Lambda Class

-
————’

Implements
Interface

T T T e - -
- .
-
-~

-~
b B
—
—'——————————

- LambdaMetaFactory

- Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas — under the hood

* InvokeDynamic is beautiful

— Introduces the notion of linkage time

— Allows for different types of call sites to be returned allowing the JVM to optimize for
ConstantCallSites

* LambdaMetaFactory dynamically generates a class implementing the SAM

* SAM implementation will call generated synthetic method on capturing
class

* The class is defined ‘anonymously’

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Lambdas — under the hood

* Lambdas can be serialized but must implement Serializable

* A Serializable lambda adds behaviour to the class:
— writeReplace/readResolve
— SerializedLambda

* Metadata for the lambda and captured arguments are serialized

* Type conversion as interface types can be narrowed at the call site /
captured class

— Slightly more involved for primitives — boxed & unboxed

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

Hardware and Software
Engineered to Work Together

L Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Distributed under Non Disclosure Agreement — Do Not Distribute

ORACLE

