

Best Practices for Elastic Data Access in a Shared Services Architecture

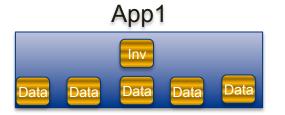
Everett Williams
Senior Director of Technology
March 19th 2015

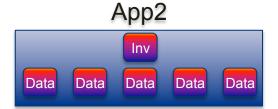
Problem Statement

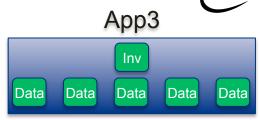
- Question:
 - I have lots of Coherence Applications, How to best share coherence resources across them?
- Answer
 - It depends...

Trade-offs

- Reuse
- Isolation
- Manageability


Single Homogeneous Cluster



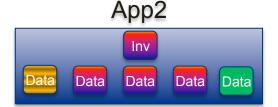

 All Applications are distributed across all nodes of a homogenous cluster where all nodes start all services.

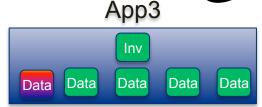
Single Clusters

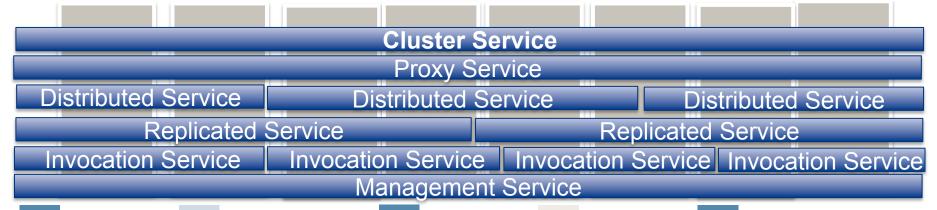
Single Homogenous Cluster

- Benefits:
 - Complete Reuse
 - Join Capable data
- Challenges
 - Change analysis (i.e. Will new applications impact current?)
 - Heap Usage Isolation
 - CPU isolation
 - Capacity Management

Single Heterogeneous Cluster

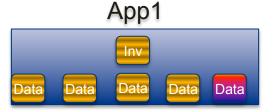


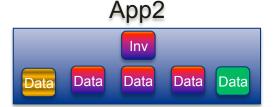

 A single cluster where each node service configuration changes based on the role of the node.


Heterogeneous Service

Single Heterogeneous Cluster

- Benefits:
 - CPU Isolation
 - Heap Isolation
 - Thread Isolation
- Challenges
 - Complex configuration
 - Infrastructure Isolation
 - Data joins-Transactions
- Best for:
 - Dynamic Single Owner Environments


Multiple Cluster



 A cluster for each data domain and connect to each domain using Coherence Extend.

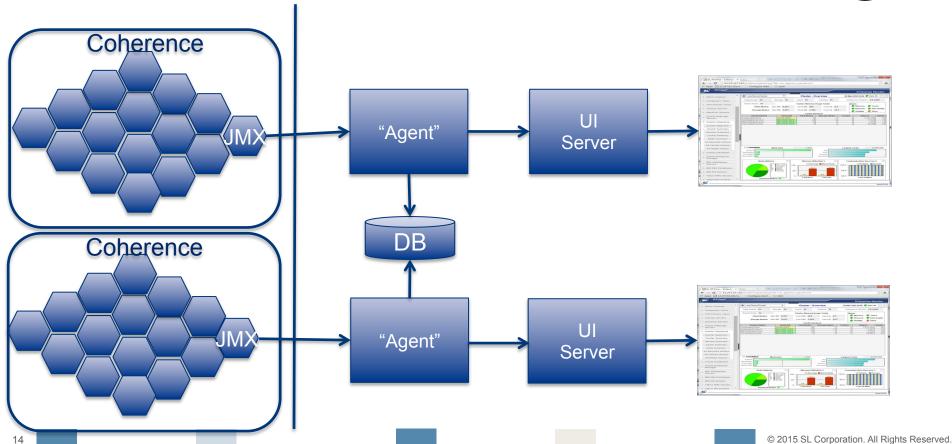
Multiple Clusters

oic Oldste

Cluster Service Cluster Service Cluster Service Proxy Service Proxy Service Proxy Service Distributed Service Distributed Service Distributed Service Replicated Service Replicated Service Replicated Service **Invocation Service Invocation Service Invocation Service** Management Service Management Service Management Service

Multiple Cluster

- Benefits:
 - Complete Isolation across each data domain
- Challenges
 - Managing more clusters
 - Joins-transactions across clusters


Monitoring Features

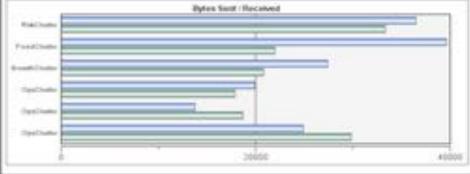
- Health monitoring (alerting)
- Scalability Analysis
- Event Analysis
- Bottleneck Analysis
- Capacity Analysis
- Usage and performance Analysis
- Task Analysis (threads)
- Client Analysis (proxy)
- Tuning Analysis (JVM GC).

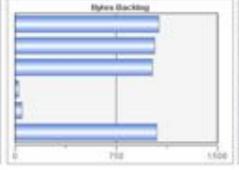
Coherence Monitoring Architecture

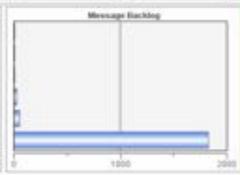

Monitoring Challenges

- How do we determine the current Activity and health state of multiple clusters?
- When a customer calls with an Issue, How do we determine which cluster the issue is with?

Multiple Cluster Overview



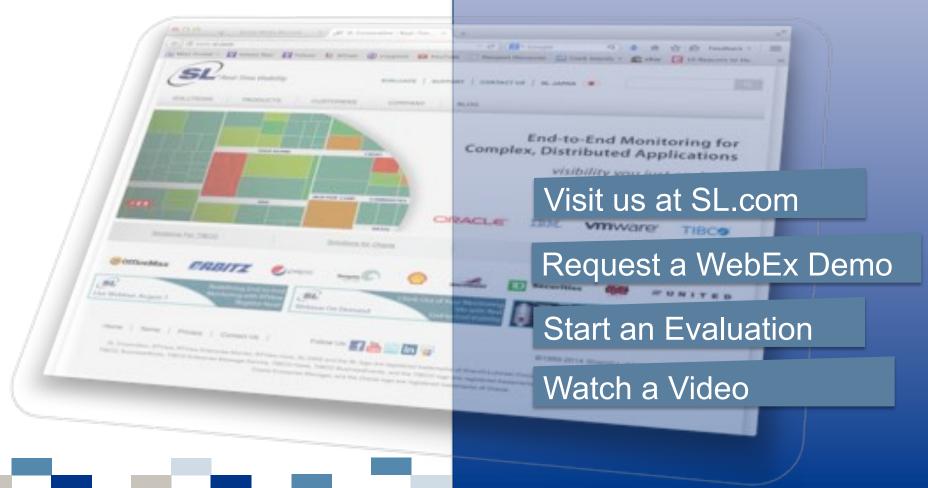

MultiCluster Proxy



®	14 Med 28	SERVICE SECTION OF THE					
Formula SP Fillion: "							
	Certe	Dytes Received	Bytes Sent	Messages Received	Menzages Sent	Max Dyle Besking	Max Way Backleg
40 G E B F			29,040		72 13	343	
790 E026	. 97	22,514	30,000	U RD	- 46	1,340	90
110.00.1	4	175,410	181,671	3,900	3,529	1,547	1,962
716 0.0 11		102,205	136,637	1,040	1,60	1,347	1,1097
710.0.0.79	4	36,710	21,804	- 71	52	1,342	1.82
70.02.84		32,616	51,674	54	90	1,341	96
7116 G G 12	- 1	161,707	164,264	1,616	1.802	1,341	1,741
10.03.64 110.00.12 10.00.10	4	30,096	21,126	67	796	1,5300	90

Dut Meg Backlog	Out Byte Backing	Syles Received	Dylen Sept	Sylas Rec per second	Dytes Sent per second
- 61					
	1,095	36,550	33,342	1,025.69	1,676.40
1,624	1,049	24,903	29,049	1,374,94	1,640.02
3330.4	1,034	30,004	21,000	3,825,74	1,015.90
	1,021	27,366	20,774	1,230.21	1,045.90 933.87
:62	82	12,763	50.000	767.96	1,029.46
27	37	19,626	17,885	1,101.24	960.34
	62 27	8 1,021 52 52 27 27		(2) (3) (2,70) (4,60)	52 52 13.763 14.665 712.96

Questions



For more information

- Everett.Williams@sl.com
- www.sl.com

For More Information

