
Coherence Monitoring
You know how, but what and why

David Whitmarsh

March 29, 2015



Outline

1 Introduction

2 Failure detection

3 Performance Analysis



Outline

1 Introduction

2 Failure detection

3 Performance Analysis

20
15

-0
3-

29

Coherence Monitoring

Outline

This talk is about monitoring. We have had several presentations on
monitoring technologies at Coherence SIGs in the past, but they have been
focussed on some particular product or tool. There are many of these on the
market all with their own strengths and weaknesses. Rather than look at
some particular tool and how we can use it, I’d like to talk instead about what,
and why we monitor, and give some thought as to what we would like from
our monitoring tools to help achieve our ends. Monitoring is more often a
political and cultural challenge than a technical one. In a large organisation
our choices are constrained and our requirements affected by corporate
standards, by the organisational structure of the support and development
teams, and by the relationships between teams responsible for
interconnecting systems,



What?

Operating System

JMX

Logs



What?

Operating System

JMX

Logs

20
15

-0
3-

29

Coherence Monitoring

Introduction

What?

operatings system metrics include details of memory, network and CPU
usage, and in particular the status of running processes. JMX includes
Coherence, platform and application MBeans. Log messages may derive
from Coherence or our own application classes. It is advisable to maintain a
separate log file for logs originating from Coherence, using Coherence’s
default log file format. Oracle have tools to extract information from standard
format logs that might help in analysing a problem. You may have compliance
problems sending logs to Oracle if they contain client confidential data from
your own logging.
Development team culture can be a problem here. It is necessary to think
about monitoring as part of the development process, rather than an
afterthought. A little though about log message standards can make
communication with L1 support teams very much easier, its in your own
interest.



Why?

Programmatic - orderly cluster startup/shutdown - ms/seconds

Detection - seconds/minutes

Analysis (incidents/debugging) - hours/days

Planning - months/years



Why?

Programmatic - orderly cluster startup/shutdown - ms/seconds

Detection - seconds/minutes

Analysis (incidents/debugging) - hours/days

Planning - months/years

20
15

-0
3-

29

Coherence Monitoring

Introduction

Why?

Programmatic monitoring is concerned with the orderly transition of system
state. Have all the required storage nodes started and paritioning completed
before starting feeds or web services that use them? Have all write-behind
queues flushed before shutting down the cluster?
Detection is the identification of failures that have occurred or are in imminent
danger of occurring leading to the generation of an alert so that appropriate
action may be taken. The focus is on what is happening now or may soon
happen.
Analysis is the examination of the history of system state over a particular
period in order to ascertain the causes of a problem or to understand its
behaviour under certain conditions. Requiring the tools to store, access, and
visualise monitoring data.
Capacity planning is concerned with business events rather than cache
events, the correlation between these will change as the business needs and
the system implementation evolves. Monitoring should detect the long-term
evolution of the system usage in terms of business events and provide
sufficient information to correlate with cache usage for the current
implementation



Resource Exhaustion

Memory (JVM, OS)

CPU

i/o (network, disk)



Resource Exhaustion

Memory (JVM, OS)

CPU

i/o (network, disk)

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Resource Exhaustion

Alert on memory - your cluster will collapse. But a system working at capacity
might be expected to use 100% CPU or i/o unless it is blocked on external
resources. Of these conditions, only memory exhaustion(core or JVM) is a
clear failure condition. Pinning JVMs in memory can mitigate problems where
OS memory is exhausted by other processes but the CPU overhead imposed
on a thrashing machine may still threaten cluster stability. Page faults obove
zero (for un-pinned JVMS), or above some moderate threshold (for pinned
JVMs) should generated an alert.
A saturated network for extended periods may threaten cluster stability.
Maintaining all cluster members on the same subnet and on their own private
switch can help in making network monitoring understandable. Visibility of
load on external routers or network segments involved in cluster
communications is harder. Similarly 100% CPU use may or may not impact
cluster stability depending on various configuration and architecture choices.
Defining alert rules around CPU and network saturation can be problematic.



CMS garbage collection

CMS Old Gen Heap

0

10

20

30

40

50

60

70

80

90

Heap

Limit

Inferred



CMS garbage collection

CMS Old Gen Heap

Page 1

0

10

20

30

40

50

60

70

80

90

Heap

Limit

Inferred

20
15

-0
3-

29

Coherence Monitoring

Failure detection

CMS garbage collection

CMS garbage collectors only tell you how much old gen heap is really being
used immediately after a mark-sweep collection, At any other time, the figure
includes some indterminate amount. Memory use will always increase until
the collection threshold is reached, said threshold usually being well above
the level at which you should be concerned if it were all really in use.



CMS Danger Signs

Memory use after GC exceeds a configured limit

PS MarkSweep collections become too frequent

“Concurrent mode failure” in GC log



CMS Danger Signs

Memory use after GC exceeds a configured limit

PS MarkSweep collections become too frequent

“Concurrent mode failure” in GC log

20
15

-0
3-

29

Coherence Monitoring

Failure detection

CMS Danger Signs

Concurrent mode failure happens when the rate at which new objects are
being promoted to old gen is so fast that heap is exhasuted before the
collection can complete. This triggers a "stop the world" GC which should
always be considered an error. Investigate, analyse, tune the GC or modify
application behaviour to prevent further occurrences. As real memory use
increases, under a constant rate of promotions to old gen, collections will
become more frequent. Consider setting an alert if they become too frequent.
In the end-state the JVM may end up spending all its time performing GCs.



CMS Old gen heap after gc

MBean Coherence:type=Platform,
Domain=java.lang,subType=GarbageCollector,
name=PS MarkSweep,
nodeId=1

Attribute LastGcInfo
attribute type com.sun.management.GcInfo

Field memoryUsageAfterGc
Field type Map

Map Key PS Old Gen
Map value type java.lang.management.MemoryUsage

Field Used



CMS Old gen heap after gc

MBean Coherence:type=Platform,
Domain=java.lang,subType=GarbageCollector,
name=PS MarkSweep,
nodeId=1

Attribute LastGcInfo
attribute type com.sun.management.GcInfo

Field memoryUsageAfterGc
Field type Map

Map Key PS Old Gen
Map value type java.lang.management.MemoryUsage

Field Used20
15

-0
3-

29

Coherence Monitoring

Failure detection

CMS Old gen heap after gc

Extracting memory use after last GC directly from the platform MBeans is
possible but tricky. Not all monitoring tools can be configured to navigate this
structure. Consider implementing an MBean in code that simply delegates to
this one.



CPU

Host CPU usage

per JVM CPU usage

Context Switches



Network problems

OS interface stats

MBeans: resent/failed packets

Outgoing backlogs

Cluster communication failures “probable remote gc”



Cluster Stability Log Messages

Experienced a %n1 ms communication delay (probable remote
GC) with Member %s

validatePolls: This senior encountered an overdue poll, indicating
a dead member, a significant network issue or an Operating
System threading library bug (e.g. Linux NPTL): Poll

Member(%s) left Cluster with senior member %n

Assigned %n1 orphaned primary partitions



Cluster Stability Log Messages

Experienced a %n1 ms communication delay (probable remote
GC) with Member %s

validatePolls: This senior encountered an overdue poll, indicating
a dead member, a significant network issue or an Operating
System threading library bug (e.g. Linux NPTL): Poll

Member(%s) left Cluster with senior member %n

Assigned %n1 orphaned primary partitions

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Cluster Stability Log Messages

It is absolutely necessary to monitor Coherence logs in realtime to detect and
alert on error conditions. These are are some of the messages that indicate
potential or actual serious problems with the cluster. Alerts should be raised.
The communication delay message can be evoked by many underlying
issues: high CPU use and thread contention in one or more nodes, network
congestion, network hardware failures, swapping, etc. Occasionally even by
a remote GC.
validatePolls can be hard to pin down. Sometimes it is a transient condition,
but it can result in a JVM that continues to run but becomes unresponsive,
needing that node to be killed and restarted. The last two indicate that
members have left the cluster, the last indicating specifically that data has
been lost. Reliable detection of data loss can be tricky - monitoring logs for
this message can be tricky. There are many other Coherence log messages
that can be suggestive of, or diagnostic of problems, but be cautious in
choosing to raise alerts - you don’t want too many false alarms caused by
transient conditions.



Cluster Stability MBeans

Cluster
ClusterSize
MembersDepartureCount

Node
MemberName
RoleName
Service



Cluster Stability MBeans

Cluster
ClusterSize
MembersDepartureCount

Node
MemberName
RoleName
Service

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Cluster Stability MBeans

Some MBeans to monitor to verify that the complete cluster is running. The
Cluster MBean has a simple ClusterSize attribute, the total number of nodes
in the cluster.
MembersDepartureCount attribute can be used to tell if any members have
left. Like many attributes this is monotonically increasing so your monitoring
solution should be able to compare current value to previous value for each
poll and alert on change. Some MBeans (but not this one) have a reset
statistics that you could use instead, but this introduces a race condition and
prevents meaningful results being obtained by multiple tools.
A more detailed assertion that cluster composition is as expected can be
performed by querying Node MBeans - are there the expected number of
nodes of each RoleName?
More fine-grained still is to check the Service Mbeans - is each node of a
given role running all expected services?
Monitoring should be configured with the expected cluster composition so
that alerts can be raised on any deviation.



Network Statistics MBeans

Node
PacketsRepeated
PacketsResent
PublisherSuccessRate, ReceiverSuccessRate - only useful with
periodic reset

ConnectionManagerMBean
OutgoingByteBaccklog
OutgoingMessageBaccklog
TotalBytesReceived
TotalBytesSent



Network Statistics MBeans

Node
PacketsRepeated
PacketsResent
PublisherSuccessRate, ReceiverSuccessRate - only useful with
periodic reset

ConnectionManagerMBean
OutgoingByteBaccklog
OutgoingMessageBaccklog
TotalBytesReceived
TotalBytesSent20

15
-0

3-
29

Coherence Monitoring

Failure detection

Network Statistics MBeans

PublisherSuccessRate and ReceiverSuccessRate may at first glance look
like useful attributes to monitor, but they aren’t. They contain the average
success rate since the service or node was started, or since statistics were
reset. So they revert to a long term mean, over time since either of these.
Packets repeated or resent or good indicators of network problems within the
cluster. The connectionmanagermbean bytes received and sent can be
useful in diagnosing network congestion when caused by increased traffic
between cluster and extend clients. Backlogs indicate where outgoing traffic
is being generated faster than it can be sent - which may or may not be a sign
of network congestion. Alerts on thresholds on each of these may be useful
early warnings.



Endangered Data MBeans

Service
PartitionAssignment

HAStatus, HATarget
ServiceNodeCount
RemainingDistributionCount
partition.lost notification



Endangered Data MBeans

Service
PartitionAssignment

HAStatus, HATarget
ServiceNodeCount
RemainingDistributionCount
partition.lost notification

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Endangered Data MBeans

(The Service MBean has an HAStatus field that can be used to check that
each node service is in an expected, safe HAStatus value. The meaning of
Expected and Safe may vary. A service with backup-count zero will never be
better than NODE_SAFE. Other services may be MACHINE, RACK, or SITE
safe depending on the configurations of the set of nodes. The
ParitionAssignment MBean also provides a HATarget attribute identifying the
best status that can be achieved with the current cluster configuration.
Asserting that HAStatus = HATarget in conjunction with an assertion on the
size and composition of the member set can be used to detect problems with
explicitly configuring the target state.
These assertions can be used to check that data is in danger of being lost,
but not whether any has been lost. To do that requires a canary cache, a
custom MBean based on a PartitionLost listener, a check for orphaned
partition messages in the log, or a JMX notification listener registered on
partition.lost notifications)



Guardian timeouts

You have set the guardian to logging?
Do you want:

Heap dumps on slight excursions from normal behaviour and
HUGE logs
Heap dumps only on extreme excursions and manageable logs



Guardian timeouts

You have set the guardian to logging?
Do you want:

Heap dumps on slight excursions from normal behaviour and
HUGE logs
Heap dumps only on extreme excursions and manageable logs

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Guardian timeouts

Guardian timeouts set to anything other than logging are dangerous -
arguably more so than the potential deadlock situations they are intended to
guard against. The heap dumps provided by guardian timeout set to logging
can be very useful in diagnosing problems, however if set too low, a poorly
performing system can generate very large numbers of very large heap
dumps in the logs. Which may itself cause or mask other problems.



Asynchronous Operations

Cache MBean: StoreFailures

Service MBean: EventInterceptorInfo.ExceptionCount

StorageManager MBean: EventInterceptorInfo.ExceptionCount



Asynchronous Operations

Cache MBean: StoreFailures

Service MBean: EventInterceptorInfo.ExceptionCount

StorageManager MBean: EventInterceptorInfo.ExceptionCount

20
15

-0
3-

29

Coherence Monitoring

Failure detection

Asynchronous Operations

We want to alert on failures of service or infrastructure, or risks to the stability
of the entire system but we would normally expect that failures in individual
workflows through the system would be handled by application logic. The
exception is in the various asyncronous operations that can be configured
within Coherence - actions taken by write-behind cachestores or post-commit
interceptors cannot be easily reported back to the application. All such
implementations should catch and log exceptions so that errors can be
reported by log monitoring, but there are also useful MBean attributes. The
Cache MBean reports the total number of cachestore failures in
StoreFailures. The EventInterceptorInfo attribute of the Service MBean
reports a count of transaction interceptor failures and the same attribute on
StorageManager, the cache interceptor failures.



The problem of scale

Many hosts

Many JVMs

High operation throughput

We don’t want the management of monitoring data to become a
problem on the same scale as the application we are monitoring

Monitoring is not an afterthought



The problem of scale

Many hosts

Many JVMs

High operation throughput

We don’t want the management of monitoring data to become a
problem on the same scale as the application we are monitoring

Monitoring is not an afterthought

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

The problem of scale

A coherence cluster with many nodes can produce prodigious amounts of
data. Monitoring a large cluster introduces challenges of scale. The overhead
of collection large amounts of MBEan data and logs can be significant. Some
guidelines: Report aggregated data where possible. Interest in maximum or
average times to perform on operation can be gathered in-memory and
reported via MBeans more efficiently and conveniently than logging every
operation and analysing the data afterwards. See Yammer metrics or apache
statistics libraries.
You will need a log monitoring solution that allows you to query and correlate
logs from many nodes and machines. Logging into each machine separately
is untenable in the long-term. Such a solution should not cause problems for
the cluster, and should be as robust as possible against existing issues - e.g.
network saturation.
Loggers should be asynchronous
Log to local desk, not to NAS or direct to network appenders
Aggregate log data to the central log monitoring solution asynchronously - if
you have network problems, you will get the data eventually
Avoid excessively verbose logging - don’t tie up network and i/o resources
excessively - and don’t log so much that asynch appenders start discarding
Offload indexing and searching to non-cluster hosts - you want to be able to
investigate even if your cluster is maxed out.
Avoid products whose licensing is based on log volume. You don’t want to
have to deal with licensing restrictions in the midst of a crisis.



Aggregation and Excursions

MBeans for aggregate statistics

Log excursions

Log with context, cache, key, thread

Consistency in log message structure

Application Log at the right level

Coherence log level 5 or 6?

.



Aggregation and Excursions

MBeans for aggregate statistics

Log excursions

Log with context, cache, key, thread

Consistency in log message structure

Application Log at the right level

Coherence log level 5 or 6?

.20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Aggregation and Excursions

All common sense really. Too much volume becomes unmanageable.
Increase log level selectively to further investigate specific issues as
necessary. I’ve seen more problems caused by excessively verbose logging
than solved by it



Analysing storage node service behaviour

thread idle count

task counts

task backlog



Analysing storage node service behaviour

thread idle count

task counts

task backlog

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Analysing storage node service behaviour

task counts tell you how much work is going on in the service, the backlog
tells you if the service is unable to keep up with the workload.



Aggregated task backlog in a service

Task backlogs

0

5

10

15

20

25

30

Total



Aggregated task backlog in a service

Task backlogs

Page 1

0

5

10

15

20

25

30

Total

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Aggregated task backlog in a service

An aggregated count of backlog across the cluster tells you one thing



Task backlog per node

Task backlogs per node

0

5

10

15

20

25

Node 1

Node 2

Node 3

Node 4



Task backlog per node

Task backlogs per node

Page 1

0

5

10

15

20

25

Node 1

Node 2

Node 3

Node 4

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Task backlog per node

A breakdown by node can tell you more - in this case we have a hot node.
Aggregated stats can be very useful for the first look, but you need the drill
down



Idle threads

Idle threads per node

0

2

4

6

8

10

12

ThreadIdle Node1

ThreadIdle Node2

ThreadIdle Node3

ThreadIdle Node4



Idle threads

Idle threads per node

Page 1

0

2

4

6

8

10

12

ThreadIdle Node1

ThreadIdle Node2

ThreadIdle Node3

ThreadIdle Node4

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Idle threads

Correlating with other metrics can also be informative. Our high backlog here
correlates with low thread usage, so we infer that it isn’t just a hot node, but a
hot key.



Diagnosing long-running tasks

High CPU use

Operating on large object sets

Degraded external resource

Contention on external resource

Contention on cache entries

CPU contention

Difficult to correlate with specific cache operations



Diagnosing long-running tasks

High CPU use

Operating on large object sets

Degraded external resource

Contention on external resource

Contention on cache entries

CPU contention

Difficult to correlate with specific cache operations

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Diagnosing long-running tasks

There are many potential causes of long-running tasks.



Client requests

A request may be split into many tasks

Task timeouts are seen in the client as exception with context
stack trace

Request timeout cause can be harder to diagnose



Client requests

A request may be split into many tasks

Task timeouts are seen in the client as exception with context
stack trace

Request timeout cause can be harder to diagnose

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Client requests

A client request failing with a task timeout will give you some context to
determine at least what the task was, a request timeout is much less
informative. Make sure your request timeout period is significantly longer
than your task timeout period to reduce the likelihood of this



Instrumentation

Connection Pool and thread pool stats (JMX Mbeans)
Timing statistics (JMX MBeans, max, rolling avg)

EP/Aggregator timings & set sizes
CacheStore operation timings & set sizes
Interceptor/backing map listener timings
Serialiser timings - Subclass/delegate POFContext
Query execution times - Filter decorator

Log details of exceptional durations with context



Instrumentation

Connection Pool and thread pool stats (JMX Mbeans)
Timing statistics (JMX MBeans, max, rolling avg)

EP/Aggregator timings & set sizes
CacheStore operation timings & set sizes
Interceptor/backing map listener timings
Serialiser timings - Subclass/delegate POFContext
Query execution times - Filter decorator

Log details of exceptional durations with context

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Instrumentation

Really understanding the causes of latency issues requires instrumenting all
of the various elements in which problems can arise. Some of these can be
tricky - instrumenting an apache http client to get average times requests is
tricky, but not impossible - it is important to separate out timings for obtaining
a connection from a pool, creating a connection, and executing and fetching
results from a request. For large objects frequently accessed or updated,
serialisation times can be an issue.
Either register and MBean to publish rolling average and max times for
particular operations, or log individual events that exceed a threshold, or
maybe both.



Manage The Boundaries

Are you meeting your SLA for your clients?

Are the systems you depend on meeting their SLAs for you?



Manage The Boundaries

Are you meeting your SLA for your clients?

Are the systems you depend on meeting their SLAs for you?

20
15

-0
3-

29

Coherence Monitoring

Performance Analysis

Manage The Boundaries

Instrumentation is particularly important at boundaries with other systems. It
is much better to tell your clients that they may experience latency issues
because your downstream reference data service is slow, than to have to
investigate after they complain. The reference data team might even
appreciate you telling them first.



Response Times

Average CacheStore.load response time

0

200

400

600

800

1000

1200

Node 1

Node 2

Node 3

Node 4



Monitoring Solution Wishlist

Collate data from many sources (JMX, OS, logs)

Handle composite JMX data, maps etc

Easily configure for custom MBeans

Summary and drill-down graphs

Easily present different statistics on same timescale

Parameterised configuration, source-controlled and released with
code

Continues to work when cluster stability is threatened.

Calculate deltas on monotonically increasing quantities

Handle JMX notifications

Manage alert conditions during cluster startup/shutdown

Aggregate repetitions of log messages by regex into single alert



About me

David Whitmarsh
david.whitmarsh@shadowmist.co.uk
http:/www.shadowmist.co.uk

http:/www.coherencecookbook.org

http:/www.shadowmist.co.uk
http:/www.coherencecookbook.org

	Introduction
	Failure detection
	Performance Analysis

