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Can you do ‘Big Data’ in 
Coherence? 



Maybe?!?!?! 

•  Problem: Cost of memory / 6x storage 
ratio 
– > Elastic data (Disk or RAM) 
– > Keep number indexes small 
– > off heap indexes (coming) 

•  Problem: Getting your (big) data loaded 
– > Recoverable caching 
– > Use other distributed backing store 
 



But 

•  Elastic data & recoverable caching are 
separate (plan to unify) 
– RC => ED is IO intensive (two distinct copies). 
– 2x disk footprint 
– No compression 
– Rebalance time 
– Memory Ratio (the 6x) 
>>> Low TB Zone 
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Hadoop 

•  Backing 
– HDFS 

•  Big files (~GBs) 
•  No random write (ok if you journal writes) 
•  Use sequence files 
•  Hard to manage active set 

– Hbase (Better option) 
•  Fast writes (LSM) 
•  Supports predicate pushdown 
•  More complex setup (ZK, NN etc) 
 



Heavily memory optimised. Fast but too 
similar to Coherence to be a good fit!

KV but can scan with MR API. Eventually consistentency 
may not suit!

Read/Memory optimised 
(3.0 big improvement). Rich 
queries.!

KV with secondary indexes & range predicates!

NoSQL Backing 
Low memory footprint, 
write optimised!•  Cassandra 

•  MongoDB 
•  Oracle NoSQL 
•  Riak 
•  Couchbase 



Streams 



Message Stream Products 

RabbitMQ Kafka 

Aeron 



•  Great complement for Coherence  
•  Write through to a topic. Immutable state. 

Other !
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Cache of recent data 
with a rich query API!

Event stream!
(system of record)!

Async views: relational, 
raw, streaming, historic!
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Inbound stream processors!Direct reads & writes!

Messaging as a Backing Store 



Hang Tertiary ‘VIEWS’ 

•  Search: Elastic Search, Solr 
•  Graph: Neo4J, OrientDB 
•  Relational: Oracle. Postgres, Teradata 
•  Analytic: Exadata, Teradata, Greenplumb 
•  Document archive: Mongo  
•  Hadoop: HBase, HDFS, Parquet, avro, PB etc 

•  Complexity increases with Polyglot 
Persistence Pattern.  

•  Replica instantiation is good 
 



Streams Processors 

•  Storm 
•  Samza 
•  Spark Steaming (microbatch) 
•  Libraries such as Esper 
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Kafka + Storm!
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Lambda Architecture 

- Cool architecture for use cases that cannot work in a single pass.!
- General applicability limited by double-query & double-coding.!



Al
l y

ou
r 

da
ta
!

 Kappa Architecture 
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 Kappa Architecture 
Views!

Client!
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- Simpler choice where stream processors can handle full problem set!
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Operational /Analytic Bridge 
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Operational /Analytic Bridge 
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- Adds coordination layer needed for collaborative updates!

Samza!



Nice Stuff 

•  Scale-by-Sharding at the front, Scale-by-
Replication at the back 

•  Some “normalisation” at front. Fully 
denormlaised at the back. 

•  Rewind used to recreate ‘views’ 
 



So 

•  New Coherence features should make 
TB+ generally viable 

•  Sensible caching/processing layer over a 
simpler store 

•  NoSQL can provide a sensible interim 
backing store for larger datasets 

•  Forms a great write-through layer atop a 
streaming architecture (Op/Analytic 
Bridge) 



Thanks! 


