
Coherence & Big Data

Ben Stopford

Can you do ‘Big Data’ in
Coherence?

Maybe?!?!?!

•  Problem: Cost of memory / 6x storage
ratio
– > Elastic data (Disk or RAM)
– > Keep number indexes small
– > off heap indexes (coming)

•  Problem: Getting your (big) data loaded
– > Recoverable caching
– > Use other distributed backing store

But

•  Elastic data & recoverable caching are
separate (plan to unify)
– RC => ED is IO intensive (two distinct copies).
– 2x disk footprint
– No compression
– Rebalance time
– Memory Ratio (the 6x)
>>> Low TB Zone

BIG DATA BANDWAGON

BIG DATA!
BAND

WAGGON!

Backing Layer

Co
he

re
nc

e!

No
SQ

L!

Recent data
in cache!

Fast data load!

Lower cost
full history!

Write-through!

Hadoop

•  Backing
– HDFS

•  Big files (~GBs)
•  No random write (ok if you journal writes)
•  Use sequence files
•  Hard to manage active set

– Hbase (Better option)
•  Fast writes (LSM)
•  Supports predicate pushdown
•  More complex setup (ZK, NN etc)

Heavily memory optimised. Fast but too
similar to Coherence to be a good fit!

KV but can scan with MR API. Eventually consistentency
may not suit!

Read/Memory optimised
(3.0 big improvement). Rich
queries.!

KV with secondary indexes & range predicates!

NoSQL Backing
Low memory footprint,
write optimised!•  Cassandra

•  MongoDB
•  Oracle NoSQL
•  Riak
•  Couchbase

Streams

Message Stream Products

RabbitMQ Kafka

Aeron

•  Great complement for Coherence
•  Write through to a topic. Immutable state.

Other !
data !

center!
DB

Cache of recent data
with a rich query API!

Event stream!
(system of record)!

Async views: relational,
raw, streaming, historic!

Async!
Streaming

clients!

sync!

async!

Inbound stream processors!Direct reads & writes!

Messaging as a Backing Store

Hang Tertiary ‘VIEWS’

•  Search: Elastic Search, Solr
•  Graph: Neo4J, OrientDB
•  Relational: Oracle. Postgres, Teradata
•  Analytic: Exadata, Teradata, Greenplumb
•  Document archive: Mongo
•  Hadoop: HBase, HDFS, Parquet, avro, PB etc

•  Complexity increases with Polyglot
Persistence Pattern.

•  Replica instantiation is good

Streams Processors

•  Storm
•  Samza
•  Spark Steaming (microbatch)
•  Libraries such as Esper

Stream layer (fast)!

Batch Layer!
Serving
Layer!

Al
l y

ou
r

da
ta
! Query!

Query!

Lambda Architecture

Kafka + Storm!

Hadoop!
Cassandra!

Al
l y

ou
r

da
ta
! Query!

Query!

Lambda Architecture

- Cool architecture for use cases that cannot work in a single pass.!
- General applicability limited by double-query & double-coding.!

Al
l y

ou
r

da
ta
!

 Kappa Architecture
Views!

Client!

Client!

Stream!

Search!

NoSQL!

SQL!

Stream !
Processor!

Al
l y

ou
r

da
ta
!

 Kappa Architecture
Views!

Client!

Client!

- Simpler choice where stream processors can handle full problem set!

Kaffka!

Elastic!
Search!

Cassandra!

Oracle!

Samza or!
Storm!

Operational /Analytic Bridge

 A

ll
yo

ur
 d

at
a!

Client!

Client!

Client!
Operational!

Search!

SQL!

NoSQL!Stream!

Views!
Stream !

Processor!

Operational /Analytic Bridge

 A

ll
yo

ur
 d

at
a!

Client!

Client!

Client!Coherence!

Hadoop!

Oracle!

Cassandra,!
MongoDB!

Kaffka,!
RabbitMQ!

…!

Views!

- Adds coordination layer needed for collaborative updates!

Samza!

Nice Stuff

•  Scale-by-Sharding at the front, Scale-by-
Replication at the back

•  Some “normalisation” at front. Fully
denormlaised at the back.

•  Rewind used to recreate ‘views’

So

•  New Coherence features should make
TB+ generally viable

•  Sensible caching/processing layer over a
simpler store

•  NoSQL can provide a sensible interim
backing store for larger datasets

•  Forms a great write-through layer atop a
streaming architecture (Op/Analytic
Bridge)

Thanks!

