

Eugen Gendelman
Coherence consultant

Experiences from testing a large
Coherence application on Exalogic

Agenda
•  Customer Use Case – large coherence application
•  Why considering Oracle’s Engineered Systems?

•  Planning for Exalogic POC

•  First impression of running on the Exastack

•  Improving Performance of a large Coherence cluster

•  Coherence filtering techniques

•  What did we achieve?

•  Q&A

Customer Use Case - platform
•  Global investment Bank’s platform provides critical data processing

platform for regulatory reporting

•  Failure to comply can result in unlimited fines, prison sentences or loss
of banking licence

•  Coherence based solution consumes trade data from several trading
systems

•  Consolidated trade data is transformed, enriched and reports generated
in near real time

•  Reports are sent to the appropriate regulatory body, whether this is to
the US for Dodd Frank, Hong Kong for HKMA or other various regulatory
bodies around the world

•  Central view of trades across the Bank for all asset classes

•  System failure leads to stop of trading = millions in lost profits

Customer Use Case - continued

•  ~ 200 storage enabled Coherence nodes
•  ~ 2 terabytes trade and reference data stored in Coherence

•  48 servers in 8 racks between Live and DR sites

•  Trade data must be synchronously persisted for DR
recovery – write-through for every mutation

•  Heavy trade data and reference data querying

•  Heavy use of Drools and XSLTs for transformation and
enrichment

•  Distributed and scalable state machine implemented on top
of Coherence

Why considering Oracle’s Engineered Systems?

•  Legislative and regulatory rules put significant pressure on
the availability and performance of the system

•  No noticeable down time

•  Fast time to recovery

•  Zero data loss

•  Lack of consistency with internal build/networking/patching

•  Need to process 10x trades per second

•  Expansion plans beyond trade reporting

Exastack POC – planning

•  Test scenarios include:
•  Kill several Coherence nodes
•  Panic physical servers
•  Kill and recover the whole Coherence cluster
•  Kill Exalogic Network switch

•  Over 100 destructive tests runs in 3 weeks
•  All this while processing 1 Million trades!
•  In addition to achieving 1000% performance

improvement on half of the servers

Exastack POC - preparation

• Create production like test data - 1 million trades
• Simulators for Trading Systems and Regulators
• Fast multi-threaded export/import mechanism
• Attempts to improve performance on the

commodity kit

• Focus on repeatability

POC setup

Data Guard

JD
B

C

Live Exalogic
half rack

12 blades of 16

4 logical racks
JD

B
C

DR Exadata
RAC
4 blades

DR Exalogic
half rack
12 blades of 16

4 logical racks

Live Exadata
RAC

4 blades

First 1M trades run on Exalogic

•  Using LightMessageBus - the network is no longer the
bottleneck – RDMA (Remote Direct Memory Access)

•  Starting up 140 nodes simultaneously is fast and it works
•  Exalogic was too fast for our code!
•  Exposes thread safety issues as though under an x-ray

First 1M trades run on Exalogic
continued

•  Drools (cached in Coherence) thread safety issues resulted in
infinite loop on initialization when hit by multiple threads – had to
implement a single threaded “warm-up” mechanism

Improving write-through performance
•  POF objects stored as BLOBs in the database
•  Average 30 database updates per trade
•  Target 1,000 trades per second = 30,000 blob writes

per second – a small volume for Exadata
•  But need to reduce redo logs contention
•  Coherence cache store bundling doubled

database throughput

Nested AND filters

•  What is the cost of executing nested AND filters, assuming all
extractors are indexed?

•  7 key sets intersections – N operation
•  Low Cardinality filters may intersect very large sets
•  Performance degradation as cache size increases
•  Can easily take hundreds of milliseconds on each node
•  Unless KeyAssociatedFilter used, ALL nodes will do similar work

event where trade is not present
•  High CPU impact

All Filter

•  Individual filter’s results evaluated sequentially
•  Always takes ~1ms assuming high cardinality (uncommon or

unique) of tradeId filter
•  Nodes where the tradeId is not present would do almost no work
•  Not only is this faster but it also frees up CPU resources
•  Order is important

This filter runs ~300 times faster on our cluster

InFilter behaviour

•  InFilter will ‘union’ all keys matching selection
•  Solution is to override applyIndex method making it

to validate the keys passed into the filter

Coherence AllFilter optimisation

•  AllFilter optimisation is based on the result of
calculateEffectiveness method

1. Match filters executed first – effectiveness 1
EqualsFilter, ContainsFilter, IsNullFilter, NotEqualsFilter,
IsNotNullFilter

2. Range filters
GreaterFilter, GreaterEqualsFilter, LessEqualsFilter, LessFilter

3. Iterator filters
InFilter, ContainsAllFilter, ContainsAnyFilter, LikeFilter*

4. Unindexed last

InFilter effectiveness
How to make Coherence execute InFilter first?

Getting it right on large scale project
•  Challenge

•  About 800 places in the code where filters constructed
•  Global team - not all devs fully understand production data set
•  Similar filters use different extractors – indexing nightmare
•  Do I need to use KeyAssociatedFilter?
•  One un-optimised filter can effect stability of the whole cluster
•  Very difficult to troubleshoot

•  Solution is to abstract the complexity into a Filter Builder

How does Filter Builder work?
•  Fluent API easy to use
•  AllFilter constructed automatically based on cardinality
•  KeyAssociatedFilter will be used automatically where possible
•  Implements logging for slow filters – above threshold
•  Can track the which component constructed the “offending” filter
•  QueryRecorder can be used on a specific node using Invokable

What did we achieve?

•  No noticeable impact on overall processing time and
zero data loss when killing
•  Coherence Nodes,
•  Rack
•  Exalogic switch

•  18 times performance improvement (target was 10)
•  Half of the improvement were due to the code optimization
•  Code deficiencies would be hard to identify on a slower

network and slower hardware

•  Completely automated testing process

Troubleshooting guardian thread dump - a thread stuck waiting for the database

"TradeCacheWorker:33" id=96 State:RUNNABLE (in native)
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:152)
 at java.net.SocketInputStream.read(SocketInputStream.java:122)
 at oracle.net.ns.Packet.receive(Packet.java:300)
 at oracle.net.ns.DataPacket.receive(DataPacket.java:106)
 at oracle.net.ns.NetInputStream.getNextPacket(NetInputStream.java:315)
 at oracle.net.ns.NetInputStream.read(NetInputStream.java:260)
 at oracle.net.ns.NetInputStream.read(NetInputStream.java:185)
 at oracle.net.ns.NetInputStream.read(NetInputStream.java:102)
 at oracle.jdbc.driver.T4CSocketInputStreamWrapper.readNextPacket(T4CSocketInputStreamWrapper.java:124)
 at oracle.jdbc.driver.T4CSocketInputStreamWrapper.read(T4CSocketInputStreamWrapper.java:80)
 at oracle.jdbc.driver.T4CMAREngine.unmarshalUB1(T4CMAREngine.java:1137)
 at oracle.jdbc.driver.T4CTTIfun.receive(T4CTTIfun.java:290)
 at oracle.jdbc.driver.T4CTTIfun.doRPC(T4CTTIfun.java:192)
 at oracle.jdbc.driver.T4C8TTILob.getChunkSize(T4C8TTILob.java:236)
 at oracle.jdbc.driver.T4CConnection.getChunkSize(T4CConnection.java:2497)
 - locked oracle.jdbc.driver.T4CConnection@383dbab1
 at oracle.sql.BLOB.getChunkSize(BLOB.java:463)
 at oracle.sql.BLOB.getBufferSize(BLOB.java:485)
 at oracle.sql.BLOB.setBinaryStream(BLOB.java:944)
 at oracle.jdbc.driver.OraclePreparedStatement.setBinaryStreamContentsForBlobCritical(OraclePreparedStatement.java:7061)
 - locked oracle.jdbc.driver.T4CConnection@383dbab1
 at oracle.jdbc.driver.OraclePreparedStatement.setBlobInternal(OraclePreparedStatement.java:11492)
 at oracle.jdbc.driver.OraclePreparedStatement.setBlob(OraclePreparedStatement.java:11261)
 at oracle.jdbc.driver.OraclePreparedStatementWrapper.setBlob(OraclePreparedStatementWrapper.java:560)
 at sun.reflect.GeneratedMethodAccessor122.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at oracle.ucp.jdbc.proxy.StatementProxyFactory.invoke(StatementProxyFactory.java:230)
 at oracle.ucp.jdbc.proxy.PreparedStatementProxyFactory.invoke(PreparedStatementProxyFactory.java:124)
 at com.sun.proxy.$Proxy25.setBlob(Unknown Source)
 at com.mybank.persistence.TradeCacheStore$2.setValues(TradeCacheStore.java:201)
 at org.springframework.jdbc.core.JdbcTemplate$4.doInPreparedStatement(JdbcTemplate.java:893)
 at org.springframework.jdbc.core.JdbcTemplate$4.doInPreparedStatement(JdbcTemplate.java:1)
 at org.springframework.jdbc.core.JdbcTemplate.execute(JdbcTemplate.java:587)

Internal build stack reality

