Filtering 100M objects
What can go wrong?

Alexey Ragozin
alexey.ragozin@gmail.com
Dec 2013

mailto:alexey.ragozin@gmail.com

Problem description

100M object (50M was tested)
~ 100 fields per object
~ 1kb per object (ProtoBuf binary format)

Simple queries
select .. where .. order by .. [limit N]

Expected query result set — 200k
Max query result set — 50% of all data

Problem description

1OOM object (SOM was tested)

select . where . order by .. [l:|.m:|.t N]

Inline with

Expected query result set — 2 Coherence filters

|

Max query result set — 50% of all data

Problem description

100M object (50M was tested)
~ 100 fields per object

~ 1kb per object (ProtoBuf binary format)

Simple queries

select .. where .. order by .. [limit NJ:

Expected query result set — 200k

Challenge]

Max query result set — 50% of all data

Problem description

« 100M object (50M was tested)
« ~100 fields per object
« ~1kb per object (ProtoBuf binary format)

* Simple queries
select .. where .. order by .. [limit N]

» Expected query result set — 200k |

 Max query result set ﬁ 50% of & o[atg__i

Real challenge]

Big result set problem

Calling NamedCache method

= Single TCMP message to each participating member

" Processing of on remote member
" Single TCMP result message from each member
= Aggregation all results in caller JVM

Return form method

& Huge TCMP message = cluster crash

Naive strategy

Processing of query

= Send aggregator with filter, retrieve
v’ Keys
v’ Field for sorting
= Sort whole result set (keys + few fields)
= Apply limit
= Retrieve and send objects in fixed batches

Testing ...

OutOfMemoryError on storage node

= Storage node processing filter
(600K objects per node)

» Deserialize value, a

value is there
er, match ...

Deserialized]

> ... retain entryuntil ... (end of filtering ?)
" Filter processing may take few seconds
" There could be few concurrent queries

Using indexes

" [ndex only filter does not deserialize object
= \We cannot index everything
= Single unindexed predicate would call deserialization

Special filter to cut deserialized object reference
= \We do not need object (aggregator extracts from binary)

= Desirialized object now collected in young space
= Synthetic wrapper object + messing with serialization

Testing ...

Very high memory usage on service node

» Collecting and sorting large result set

= Have to use huge young space (8Gib)

" Query concurrency in limited by memory

Single threaded sorting
" |tis very fast tough

Indexes and attribute cardinality

“Status” attribute — 90% of objects are OPEN

. 5.69
No index
5.78

Indexed: ticker I

0.01
Indexed: both
i 0.496
0.018
Indexed: both + nolndex hint
0.017
0 1 2 3 4 5 6 7

H ticker & side H side & ticker

http://blog.ragozin.info/2013/07/coherence-101-filters-performance-and.html

http://blog.ragozin.info/2013/07/coherence-101-filters-performance-and.html

Indexes and attribute cardinality

Possible strategies to remedy

" Transform query
" Wrap “bad” predicates into NoIndexFilter

" Fix filter execution “planner”

Indexes and attribute cardinality

Can we go without indexes?

= Full scan 50M — 80 cores, 3 servers
= 30 seconds
= Too slow!

Naive strategy

Almost good enough

Problems with naive strategy

" Big memory problems on service process
" Max result set size is limited

* No control on max TCMP packet size

" |[ndexes may be inefficient

Incremental retrieval

= Result set is always sorted
" Primary key is always last sort attribute

= Aggregator on invocation
v’ Sort its partial result set
v'Selects first N
v Return N references (key + sort attribute)
v’ Return remaining size of each partition

Incremental retrieval

P1L O O O @) @) OO0 OO0 OO @)
P2 O O 00 O

P3 o O O OO o060 o O O O 00O
P4 O O O O0O0O0O0OO0OO OO0 O OO

Sort order :

Incremental retrieval

PL o0 0o O o © 000 00 OO O
P2 o o o0 o]

P 0 O O 00O 0O OO O O 00O
P4 O 00 000000 00O O OO

Sort order :

Incremental retrieval

I
PL o0 0 o©O © 0, 000 00 OO O
P2 0 0 00 O] i
P 0 0 O 00 PO OO O O 00O
P4 O 0 © ood:ooo 000 O OO
I

Sort order :

Incremental retrieval

I
PL O O O O O : OO0 OO0 0O O
P2 O O 00 O] i Partition excluded
P3 O O O OO Ip O O O O O 00O
P4

|
O O O oodlooo 000 O 0O
|

Sort order :

Incremental retrieval

|
PL 0 O O o o© coo op oo ©
P2 0 0 00 O] i
P2 O O O OO OO ©O O |0 0 000
P4 O 00O 00000O0 ood: o 00
|

Sort order :

Incremental retrieval

Advantages

= Size of TCMP packets is under control

* Reduced traffic for LIMIT queries

" Fixed memory requirements for service node

Partial retrieval limit
" Target result set — 200k

= 80 nodes
" Best performance with ~1500 limit

Incremental retrieval

A little nuance ...
" Filter based aggregator is executed by one thread
= How many times aggregate(...) method would be called?

1 Once (1 Once per partition
J Twice Other

Coherence limits amount of data passed to aggregate(...)
based on binary side of data.

Incremental retrieval

What about snapshot consistency?
" There were no consistency to begin with
" No consistency between nodes

" |[ndex updates are not transactional

But we need result set of query to be consistent!
" Hand made MVCC

= |f you REALLY, REALLY, REALLY need it

Hand made MVCC

Synthetic key to have multiple versions in cache
Data affinity to exploit partition level consistency
Timestamp based surface — consistent snapshot

if timestamp is a part of key
IndexAwareFilter can be used (without an index)

otherwise
TimeSeriesIndex - https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

Time series index

Special index for managing versioned data
Entry key Entry value

//\//\

Series key Entry id Timestamp | Payload

\ /
\/

Cache entry
Getting last version for series k

select * from versions where series=K and version =

(select max(version) from versions where key=Kk)

https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

Time series index

Series _ | |
inverted index Timestamp inverted subindex

(Series key (Tmestamp)—)(Entry ref)

UIIES Entry ref
W (series key %\ (Timestamp }»(Entry ref)
2 P\g(Timestamp }»(_ Entry ref)
E (Series key

0] N N eececccccccccccccccccccces
< (Series key

(Series key

https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

TCMP vs TCP

TCP
* WAN networks
e Slow start
e Sliding window

* Timeout packet loss
detection

Fair network sharing

TCMP
* Single switch networks
* Fast NACKs
* Loss detection by packet order
* Per packet resend

Low latency communications
Bandwidth maximization

TCMP vs TCP

& In bandwidth completion
TCP doesn’t have a chance against TCMP

Having TCP and TCMP in one network

= Normally TCMP is limited by proxy speaking TCP
= Traffic amplification effects (TCMP traffic >> TCP traffic)

= Bandwidth strangled TCP becomes unstable
v Hanging for few seconds (retransmit timeouts)
v’ Spurious connection resets

Keep TCMP in separate switch if possible!

http://blog.ragozin.info/2013/09/coherence-101-entryprocessor-traffic.html

http://blog.ragozin.info/2013/09/coherence-101-entryprocessor-traffic.html

Bonus: ProtoBuf extractor

Inspired by POF extractor

= Extracts fields for binary data

* Does not require generated classes or IDL

= Use field IDs to navigate data

= XPath like expressiveness (i.e. extract from map by key)
= Can processes any number of extractors in single pass

= Apache 2.0 licensed

https://qgithub.com/gridkit/binary-extractors

https://github.com/gridkit/binary-extractors

Bonus: SJK diagnhostic tool

SJK — CLI tool exploiting JVM diagnostic interfaces
" ConnecttoJVM by PID
= Display thread CPU usage in real time (like top)
= Display per thread memory allocation rate
" Dead objects histogram
... and more

https://github.com/aragozin/jvm-tools

https://github.com/aragozin/jvm-tools/

Thank you

http://blog.ragozin.info

- my articles
http://code.google.com/p/gridkit
http://github.com/gridkit

- my open source code
http://aragozin.timepad.ru

- tech meetups in Moscow

Alexey Ragozin
alexey.ragozin@gmail.com

http://blog.ragozin.info/
http://blog.ragozin.info/
http://code.google.com/p/gridkit
http://code.google.com/p/gridkit
http://github.com/gridkit
http://aragozin.timepad.ru/

