
Filtering 100M objects

What can go wrong?

Alexey Ragozin
alexey.ragozin@gmail.com

Dec 2013

mailto:alexey.ragozin@gmail.com

Problem description

• 100M object (50M was tested)

• ~ 100 fields per object

• ~ 1kb per object (ProtoBuf binary format)

• Simple queries
select … where … order by … [limit N]

• Expected query result set – 200k

• Max query result set – 50% of all data

Problem description

• 100M object (50M was tested)

• ~ 100 fields per object

• ~ 1kb per object (ProtoBuf binary format)

• Simple queries
select … where … order by … [limit N]

• Expected query result set – 200k

• Max query result set – 50% of all data

Object size is Ok

Inline with
Coherence filters

Problem description

• 100M object (50M was tested)

• ~ 100 fields per object

• ~ 1kb per object (ProtoBuf binary format)

• Simple queries
select … where … order by … [limit N]

• Expected query result set – 200k

• Max query result set – 50% of all data

Challenge

Challenge

Problem description

• 100M object (50M was tested)

• ~ 100 fields per object

• ~ 1kb per object (ProtoBuf binary format)

• Simple queries
select … where … order by … [limit N]

• Expected query result set – 200k

• Max query result set – 50% of all data

Real challenge

Big result set problem

Calling NamedCache method

 Single TCMP message to each participating member

 Processing of on remote member

 Single TCMP result message from each member

 Aggregation all results in caller JVM

Return form method

 Huge TCMP message = cluster crash

Naive strategy

Processing of query

 Send aggregator with filter, retrieve

 Keys

 Field for sorting

 Sort whole result set (keys + few fields)

 Apply limit

 Retrieve and send objects in fixed batches

Deserialized
value is there

Testing …

OutOfMemoryError on storage node

 Storage node processing filter
(600K objects per node)

Deserialize value, apply filter, match …

… retain entry until … (end of filtering ?)

 Filter processing may take few seconds

 There could be few concurrent queries

Solving …

Using indexes

 Index only filter does not deserialize object

 We cannot index everything

 Single unindexed predicate would call deserialization

Special filter to cut deserialized object reference

 We do not need object (aggregator extracts from binary)

 Desirialized object now collected in young space

 Synthetic wrapper object + messing with serialization

Testing …

Very high memory usage on service node

Collecting and sorting large result set

 Have to use huge young space (8Gib)

 Query concurrency in limited by memory

Single threaded sorting

 It is very fast tough

Indexes and attribute cardinality

“Status” attribute – 90% of objects are OPEN

http://blog.ragozin.info/2013/07/coherence-101-filters-performance-and.html

0.017

0.496

0.066

5.78

0.018

0.01

0.066

5.69

0 1 2 3 4 5 6 7

Indexed: both + noIndex hint

Indexed: both

Indexed: ticker

No index

ticker & side side & ticker

http://blog.ragozin.info/2013/07/coherence-101-filters-performance-and.html

Indexes and attribute cardinality

Possible strategies to remedy
 Transform query

 Wrap “bad” predicates into NoIndexFilter

 Fix filter execution “planner”

Indexes and attribute cardinality

Can we go without indexes?
 Full scan 50M – 80 cores, 3 servers

 30 seconds

 Too slow!

Naive strategy

Almost good enough

Problems with naive strategy

 Big memory problems on service process

 Max result set size is limited

 No control on max TCMP packet size

 Indexes may be inefficient

Incremental retrieval

 Result set is always sorted

 Primary key is always last sort attribute

 Aggregator on invocation

 Sort its partial result set

Selects first N

 Return N references (key + sort attribute)

 Return remaining size of each partition

Incremental retrieval

Sort order

P1

P2

P3

P4

Incremental retrieval

Sort order

P1

P2

P3

P4

Incremental retrieval

Sort order

P1

P2

P3

P4

Incremental retrieval

Sort order

P1

P2

P3

P4

Partition excluded

Incremental retrieval

Sort order

P1

P2

P3

P4

Incremental retrieval

Advantages

 Size of TCMP packets is under control

 Reduced traffic for LIMIT queries

 Fixed memory requirements for service node

Partial retrieval limit

 Target result set – 200k

 80 nodes

 Best performance with ~1500 limit

Incremental retrieval

A little nuance …

 Filter based aggregator is executed by one thread

 How many times aggregate(…) method would be called?

 Once

 Twice

 Once per partition

 Other

Coherence limits amount of data passed to aggregate(…)
based on binary side of data.

Incremental retrieval

What about snapshot consistency?

 There were no consistency to begin with

 No consistency between nodes

 Index updates are not transactional

But we need result set of query to be consistent!

 Hand made MVCC

 If you REALLY, REALLY, REALLY need it

Hand made MVCC

Synthetic key to have multiple versions in cache

Data affinity to exploit partition level consistency

Timestamp based surface – consistent snapshot

if timestamp is a part of key

IndexAwareFilter can be used (without an index)

otherwise

TimeSeriesIndex -

https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

Time series index

Special index for managing versioned data

Getting last version for series k
select * from versions where series=k and version =

(select max(version) from versions where key=k)

Series key Entry id Timestamp Payload

Entry key Entry value

Cache entry

https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

Time series index

Series

inverted index

Series key

Series key

Series key

Series key

Series key

H
A

S
H

T
A

B
L

E

Timestamp Entry ref

Timestamp Entry ref

Timestamp Entry ref

Timestamp inverted subindex

O
R

D
E

R

https://github.com/gridkit/coherence-search-timeseries

https://github.com/gridkit/coherence-search-timeseries

TCMP vs TCP

TCP

• WAN networks

• Slow start

• Sliding window

• Timeout packet loss
detection

Fair network sharing

TCMP

• Single switch networks

• Fast NACKs

• Loss detection by packet order

• Per packet resend

Low latency communications

Bandwidth maximization

TCMP vs TCP

Having TCP and TCMP in one network

 Normally TCMP is limited by proxy speaking TCP

 Traffic amplification effects (TCMP traffic >> TCP traffic)

 Bandwidth strangled TCP becomes unstable
 Hanging for few seconds (retransmit timeouts)

 Spurious connection resets

Keep TCMP in separate switch if possible!

 In bandwidth completion
TCP doesn’t have a chance against TCMP

http://blog.ragozin.info/2013/09/coherence-101-entryprocessor-traffic.html

http://blog.ragozin.info/2013/09/coherence-101-entryprocessor-traffic.html

Bonus: ProtoBuf extractor

Inspired by POF extractor
 Extracts fields for binary data

 Does not require generated classes or IDL

 Use field IDs to navigate data

 XPath like expressiveness (i.e. extract from map by key)

 Can processes any number of extractors in single pass

 Apache 2.0 licensed

https://github.com/gridkit/binary-extractors

https://github.com/gridkit/binary-extractors

Bonus: SJK diagnostic tool

SJK – CLI tool exploiting JVM diagnostic interfaces

 Connect to JVM by PID

 Display thread CPU usage in real time (like top)

 Display per thread memory allocation rate

 Dead objects histogram

 … and more

https://github.com/aragozin/jvm-tools

https://github.com/aragozin/jvm-tools/

Thank you

Alexey Ragozin
alexey.ragozin@gmail.com

http://blog.ragozin.info
- my articles
http://code.google.com/p/gridkit
http://github.com/gridkit
- my open source code
http://aragozin.timepad.ru
- tech meetups in Moscow

http://blog.ragozin.info/
http://blog.ragozin.info/
http://code.google.com/p/gridkit
http://code.google.com/p/gridkit
http://github.com/gridkit
http://aragozin.timepad.ru/

