Scalable on-demand Risk and P&L

Raj Subramani
Christoph Leinemann

Overview

* Business Case, Requirements & Challenges
* Technical Approach
* Main Pitfalls & Lessons Learnt

* An approach to cluster management

Business Case . Cluster
) Technical Lessons

Requirements Apbroach learnt Mgmt

& Challenges PP Demo

The Business Case

 Consistent view of data across business functions
J J J J I

[Risangmt} [P&L }[Funding/Limits} [Control 1 [Stress 1

e Consistent view across management functions

J -H- Risk Management (Books)

=1~ | Risk Management (Desk)

)
L J - MIS Reporting (LoB)
J

=1~ | MIS Reporting (Across LoB) |

Business Requirements

Near Real-time reporting

Data completeness (confidence)

Trade Level reporting and Historical Coverage
Cross Asset compliant

Time to market on new/changing metrics
Complex reports (mkdata, quant, range)
Workflow sign-off, adjustments, locking of PnL
Automated export to downstream system

ilsusness) .h\ h\

Technical Approach

Near Real-time reporting

Event driven data flow, scalable at constant
performance, distributed. n

v

N\
v ¢H|¢ v
1UaI[d 18U

Persist/Load on event J
Linear scalable
high performance
distributed cache on
commodity hardware

Risk Generation Systems

LUAEL
lEven\t pﬂiigal“on l

Technical Approach

* Data completeness (confidence)

* Reporting Framework. Consistent distributed tree for status
handling based on hierarchical (reusable) components

SimpleBase
SimpleBase
c) Status SimpleBase
omposite SimpleBase LJ
SimpleBase |
[|
Composite Composite
| [|
S'.M laD A~ | | | | S '-“
S — SimpleBase

SimpleBase

Technical Approach

* Trade Level reporting and Historical Coverage

 Same report hierarchy works at aggregated or trade level
 Same report hierarchy works on historical data

* Support for paging if result sets become too big

/(/; \ Cache /é/ﬁ

Live View |

Hist. View |

/’\ 61 O O "
- e Q ,
@) O \\
| /(Loading on demand

I
Al AL

LAl AL

-

A

Technical Approach

* Cross Asset compliant

* Generic data model allows coverage across all
asset classes (Equity, FX, Fixed Income and
others)

| o | =

| scalar] - [scalar
\ | x| j = |
Vector| Vector| Vector]

\ J X | J = \ J
Matrix| | Vector| \Vector|

Technical Approach

* Time to market on new/changing metrics

 Reporting module based on interpreted language
and separated from the aggregations module

[client

Interpreter
no storage

G storage

0 aggregation

0 Transformation on
aggregated data (groovy)

Technical Approach

Dedicated Reporting language
XML based

Transformations/Operations described in
groovy

Support for Market data variables
Support for simple quantative operations

interpreted

Technical Approach

* Workflow sign-off, adjustments, locking of PnL

e Event driven export to downstream system

Satellite Applications which integrate with other Enterprise Applications and
act as logical gateway to the cache.

Tomcat

Tomcat
Export

Component

Performance Metrics

e Official T+1 PNL report

— Comprises of 1300 underlying (composite) report
components

— Evaluates 80 (SimpleBase) measures
— Reports across 30 dimensions

— Generates a sliceable cube across 55000 trades in 8
seconds (included rendering time in the GUI)

— Individual (SimpleBase) aggregation takes around
200 ms

Data Metrics

30 gig of data everyday

At fingertips of Traders, Middle Office, Product
Control and Downstream System

Classical OLAP requirements
A lot of business processes based on data

Three production clusters
— Around 800,000 Trades / day
— Around 90 million risk points per day
— Around 10 million p&l points per day
— 20 to 70 dimensions

Summary

On the fly aggregates at portfolio level
Performant trade-level drill down

Query Engine able to traverse the object graph
Dimensional agnosticism

Cross asset solution

Multi functional reporting

Co-location with data

Historical and Live reporting off one framework

iBuleessCase i i Technical ;‘H

Design - Understanding the Data

Dimensions

o

Couterparty

Curve Fam

Portfolio
—

Design - Understanding the Data

Data Quantity [GB]

120

distribute Co-locate or depends
Replicate
(where necessary)

100

80

60

40

20 I
o | I B -

Risk & PnL Metrics MarketData Dimensions Portfolios Statuses Reference etc

Facts Dimensions Rest

Design — how do we access data

* Primary access to cache to
— aggregate
— process/transform
— compose/resolve
— put/get
* Aggregations require flexible grouping based
on dimensions

Design - Approaches to Normalization

* Near-caching to build de-normalized view.
Works for aggregation and entry processors.

e Affinity and access to backing map (supported
from 3.7 / unofficial before then)

* Distributed flight weight — encode your
repetitive values. Be aware of your cardinality.

Design - Aspects of Co-location

* Near Cache on storage nodes
— Mind service dependency and invalidation policy
— Significant communication overhead
— Priming mechanism might be necessary
e Affinity
— Works if part of the keys are the same
— Mind the overall balance of your cluster
— Referenced data still has to be de-serialized

Design— become resistant to
permutations of group by criteria

* Problem
— Indexing for GroupBy extractor
— Access and de-serialization of dimension values.

e Solution

— Abstraction layer to (quickly) obtain fact-related
values (dimensions) on the fly

— You do need to put mechanism in place that
prevents aggregation while changing dimensions

Design — GroupBy without index

Group by Extractor uses underlying key for lookup to a
near cache rather then accessing the entry

CPY=DB
Trader=Fritz

Key,

ld=2 Date=t

Dim. Near
Cache

(Consider priming of near-caches)

Design — Patterns

global counter

distributed tree

processing cache

guery cache

staging cache (delta update via invokeAll)

parallel agg/paging

Coding - Entity/Logical Code Layer

* Entity
— Only ever abstracts one named cache
— Use of generics
— Massive leverage of query code and other domain specific aspects

— Index management — don’t blindly addindex all the time as locking is
involved.

— Central point for extractable aspects of your domain objects
* Logical layer

— one abstraction layer up from entity

— Can reference more then one different Entity

— Makes relationships between ‘NamedCache’s explicit

— Important to understand service dependencies and designing the right
topology

Coding - pitfalls

In large clusters use Afinity and PartitionSetFilter as for some
requests result set size temporarily grows proportional to number
of members in your cluster

Equals catch — equals contract of Hashmap when used as key in
coherence changes. The order of serialization becomes relevant.

Date object
Re-entrance
Keep your keys small

Indexes
— Use pof extractor where possible
— Try to manage them in a live cycle / avoid unnecessary ‘addindex’ calls

When in near / replicated cache state of your objects can change
Same applies to indexes
Avoid temporary caches

Operational - JVM

Less large heaps vs. more small heaps
Minimize pause times with Concurrent Mark Sweep
Verbose GC

JVM lives on after OOM. It’s state is unpredictable and
therefore it should be killed otherwise cluster integrity
is endangered

Might want human intelligence applied before killing
to avoid cascading effects.

-XX:0nOutOfMemoryError="escalate.sh %p”
-XX:+HeapDumpOnOutOfMemoryError

Operational - disk

|ldeally you want shared drive for deployment and log analysis
— but not at any cost as performance is crucial.

Slow i/o can be subtle killer

java.lang.Thread.State: RUNNABLE
at java.io.UnixFileSystem.getBooleanAttributes@(Native Method)
at java.io.UnixFileSystem.getBooleanAttributes(Unknown Source)
at java.io.File.isFile(Unknown Source)

As test copy to your log/installation dir with a ceratin SLA
Can lead to interesting conversation with infrastructure guys.

Up until 5.x full file system could have serious effects on your
cluster

Operational - MBeans

Avoid registration through code
Use XML config files
Separation between
— Utility/config beans relevant to certain node types
— Stats and introspective beans
— Utility Beans right-angled to node responsibilities
One xml config per node type that is set in your launch config.

Core jmx metrix

— Max task backlog

— Prune cycles

— Hit rates

— Communication stats

i&jsness : i h\ ‘

Demo — Prototype architecture

Separation of cluster model from actions like starting,
stopping, thread dumps

Management-cluster in parallel to managed cluster
One node per machine
Storing only minimal data

Latency not an absolute priority — hence possible to
run across regions.

Remote API exposing cluster action

— Allowing GUIl implementation

— Support for dynamic scaling

— Other intelligent event driven cluster-actions

Example App

Incubator Auction example

Site 1

Bidcder [Catne Server

Hidcder [Cache Server

Hidder [Cache Server
Bid Obsorver [Cache Server
Autionoer

Cache Sarver fioder

Cachw Server 8i00er

o = =

Cacre Sevrver |

Cache Server o Ooserver
—_—

Wish list

First of all - thanks for making a great product!
Make object local backing map part of product
Make management easier

Continuous aggregation

Index declaration via config

Generics

Thank You!

raj@subramani.com

christoph@leinemann.name

