CacheStore Lore

The ins & outs of Coherence
DB Integration

caveats

* Hope this is useful
* There’s much | don’t (yet) understand ©

schemes

@ which schemes

support a CacheStore?

schemes

local v
distributed v
replicated X
transactional x

interfaces

@ what are

the key Java interfaces to know?

interfaces

CachelLoader
CacheStore
BinaryEntryStore

interfaces

Object load(key)
\YETRIELCES)

CacheStore

BinaryEntryStore

load(binaryEntry)
loadAll(setBinaryEntries)

store(key, value) store(binaryEntry)
storeAll(mapOfEntries) storeAll(setBinaryEntries)

erase(key) erase(binaryEntry)
eraseAll(keys) eraseAll(setBinaryEntries)

A

AbstractCacheStore

threads

default situation

service-1

--

read-through AND write-through

1 x service thread

cache requests

for all caches
on this service
in this node

cache-a

blocking

client 1 client 2 service
thread
get(k1)
= select ... from ... where pk = k1;
>
another request
50ms
CORTTTTRTTLLLLLLLLLLLLLLLLLLLLLLLLLELEE N
>

any request for any
cache on this service
will wait until DB
comes back

worker threads

service-1

] 1 x service thread AA

Op tlona .I .. AA ‘ read-through AND write-through

. worker

. threads [0..n] " 1

.,

cache-a

threads: write-behind

service-1

...
....

...

TR,) read-through AND erase() calls

optional /\/\ ‘,

worker ;
threads [0..n] 1 per cache
: : (per node)

cache-a

write-behind

cache-b

@ write-behind

how do we scale out write-
behind?

write-behind scale-out

all service threads

service-1

--

.

--

- optional AA

worker
. threads [0..n]

cache-a

refresh-ahead

cache-b

thread names

per service threads

service thread DistributedCache:<service-name>
worker threads <service-name>Worker:0

<service-name>Worker:n

not unique!

per cache threads

write behind WriteBehindThread:CacheStoreWrapper(<cache-store-class-name>):<service-name>

refresh-ahead ReadThread:CacheStoreWrapper(<cache-store-class-name>):<service-name>

handling exceptions

DB constraints

e write-through v
e write-behind X

write-through exceptions

<rollback-cachestore-failures>

* leave this true
* pass the exception back to the caller

write-behind exceptions

rule #1

* avoid DB exceptions in the first place!

treat the write-behind DB tables like an
append log that can’t fail

acceptable DB exceptions

* DB unavailable v
e Out of space v

 constraint violations no X
* business rules, etc. NO! x

write-behind exceptions

rule #2

e catch SQLExceptions
* log the problem
* throw a RuntimeException

retries

write-behind exceptions

rule #3

* enable retries

but beware stuck items

Retrying

<write-requeue-threshold> : > 0

retrying

is the entire batch
not individual entries within a batch

@ how many times

* will Coherence call CacheStore.store() if you
throw a RuntimeException?

@ how often

* will Coherence call CacheStore#tstore() if you
throw a RuntimeException?

efficiency

coalescing

<write-delay>

write-delay

only this

version gets
stored
v4

@ cache miss cache

<miss-cache-scheme>

What is it?

backups

do you need them after a write?

<backup-count-after-writebehind>

batching

rule #3

Don’t write one entry at a time

storeAll()

implement it

don’t do what AbstractCacheStore does...

batching

Inserts? Updates?

MERGE!

(or call a stored proc to do this)

merge

merge
into MY TABLE a
using DUAL b
on (a.pk=?)
when matched
then update set a.coll=?, a.col2=?,
when not matched

then insert wvalues (?, ?, ?, ..)

batch performance

38x faster!

12 ms

upserts inserts batch MERGE

time to persist 128 entries to Oracle DB

batch size

<write-max-batch-size>

otherwise storeall () gets 128 entries

(or fewer)

transactions

transactions

e write-through Vv

maybe (e.g. need to update multiple tables)

* write-behind %
can’t retry part of a batch

hints and tips

idempotency

rule #4

Make your store methods
idempotent

beware

<cachestore-timeout> DON’T %

Use the guardian — and change that
(to log & continue)

What does your JDBC driver do when a thread
gets interrupted?

beware

write-behind is resilient

BUT

you can still lose data obviously

deletions

@ when is this called?

erase()

erase

* optional

* synchronous
(even for write behind)

erase

UnsupportedOperationException

gets logged first time

still gets called though

handly binary entries

interface

BinaryEntryStore

load(binaryEntry)
loadAll(setBinaryEntries)

store(binaryEntry)
storeAll(setBinaryEntries)
erase(binaryEntry)
eraseAll(setBinaryEntries)

BinaryEntryStore

* avoids deserialisation
* handy to publish entries to other clusters
* recovery DB

BinaryEntryStore

access to previous value

BinaryEntry#getOriginalBinaryValue ()

BinaryEntry#getOriginalValue ()

previous value

* memory hit
 where is this stored?

monitoring

CacheMBean

* QueueSize
The size of the write-behind queue

e StoreFailures
The total number of cache store failures

* StoreAverageBatchSize
StoreAverageReadMiillis
StoreAverageWriteMiillis

logs

* log SQLExceptions

e.g. tablespace is full

that’s all

