
CacheStore Lore

The ins & outs of Coherence
DB Integration

Phil Wheeler

Credit Suisse

A few pointers on DB integration

caveats

• Hope this is useful

• There’s much I don’t (yet) understand 

schemes

which schemes

support a CacheStore?

schemes

local

distributed

replicated

transactional









interfaces

what are

the key Java interfaces to know?

interfaces

CacheLoader

CacheStore

BinaryEntryStore

interfaces
CacheLoader

Object load(key)
Map loadAll(keys)

CacheStore

store(key, value)
storeAll(mapOfEntries)
erase(key)
eraseAll(keys)

BinaryEntryStore

load(binaryEntry)
loadAll(setBinaryEntries)
store(binaryEntry)
storeAll(setBinaryEntries)
erase(binaryEntry)
eraseAll(setBinaryEntries)

AbstractCacheStore

threads

default situation

service-1

cache-a

1 x service thread

cache-b

read-through AND write-through

for all caches
on this service

in this node

cache requests

blocking

client 1

get(k1)

service
thread

client 2

select … from … where pk = k1;

another request

50ms

any request for any
cache on this service

will wait until DB
comes back

worker threads

service-1

cache-a

1 x service thread

cache-b

read-through AND write-through
optional
worker
threads [0..n] …

…

threads: write-behind

service-1

cache-a

1 x service thread

cache-b

read-through AND erase() calls

1 per cache
(per node)

1 x write-behind thread

1 x write-behind thread
write-behind

optional
worker
threads [0..n] …

write-behind

how do we scale out write-
behind?

write-behind scale-out

node

cache-a

cache-b

node

cache-a

cache-b

node

cache-a

cache-b

…

all service threads

service-1

cache-a

1 x service thread

cache-b

1 x write-behind thread

1 x write-behind thread
refresh-ahead

optional
worker
threads [0..n] …

1 x refresh-ahead thread

1 x refresh-ahead thread

thread names

per service threads

service thread DistributedCache:<service-name>

worker threads <service-name>Worker:0

<service-name>Worker:n

per cache threads

write behind WriteBehindThread:CacheStoreWrapper(<cache-store-class-name>):<service-name>

refresh-ahead ReadThread:CacheStoreWrapper(<cache-store-class-name>):<service-name>

not unique!

handling exceptions

DB constraints

• write-through

• write-behind




write-through exceptions

 <rollback-cachestore-failures>

• leave this true

• pass the exception back to the caller

write-behind exceptions

rule #1

• avoid DB exceptions in the first place!

treat the write-behind DB tables like an
append log that can’t fail

acceptable DB exceptions

• DB unavailable 

• Out of space 

• constraint violations no 

• business rules, etc. NO! 

write-behind exceptions

rule #2

• catch SQLExceptions

• log the problem

• throw a RuntimeException

retries

write-behind exceptions

rule #3

• enable retries

but beware stuck items

Retrying

<write-requeue-threshold> : > 0

retrying

is the entire batch

not individual entries within a batch

how many times

• will Coherence call CacheStore.store() if you
throw a RuntimeException?

how often

• will Coherence call CacheStore#store() if you
throw a RuntimeException?

efficiency

coalescing

<write-delay>

v1 v2 v3 v4

k k k k

write-delay

  

only this
version gets

stored

cache miss cache

<miss-cache-scheme>

What is it?

backups

do you need them after a write?

<backup-count-after-writebehind>

batching

rule #3

Don’t write one entry at a time

storeAll()

implement it

don’t do what AbstractCacheStore does…

batching

Inserts? Updates?

 MERGE!

(or call a stored proc to do this)

merge

merge

 into MY_TABLE a

 using DUAL b

on (a.pk=?)

when matched

 then update set a.col1=?, a.col2=?, …

when not matched

 then insert values (?, ?, ?, …)

451 ms

304 ms

12 ms

upserts inserts batch MERGE

batch performance

time to persist 128 entries to Oracle DB

38x faster!

batch size

 <write-max-batch-size>

otherwise storeAll()gets 128 entries

(or fewer)

transactions

transactions

• write-through 
maybe (e.g. need to update multiple tables)

• write-behind 
can’t retry part of a batch

hints and tips

idempotency

rule #4

Make your store methods
idempotent

beware

<cachestore-timeout> DON’T 

Use the guardian – and change that

(to log & continue)

What does your JDBC driver do when a thread
gets interrupted?

beware

write-behind is resilient

BUT

 you can still lose data obviously

deletions

when is this called?

erase()

erase

• optional

• synchronous
(even for write behind)

erase

UnsupportedOperationException

gets logged first time

still gets called though

handly binary entries

interface

BinaryEntryStore

load(binaryEntry)
loadAll(setBinaryEntries)
store(binaryEntry)
storeAll(setBinaryEntries)
erase(binaryEntry)
eraseAll(setBinaryEntries)

BinaryEntryStore

• avoids deserialisation

• handy to publish entries to other clusters

• recovery DB

BinaryEntryStore

access to previous value

 BinaryEntry#getOriginalBinaryValue()

 BinaryEntry#getOriginalValue()

previous value

• memory hit

• where is this stored?

monitoring

CacheMBean

• QueueSize

The size of the write-behind queue

• StoreFailures

The total number of cache store failures

• StoreAverageBatchSize
StoreAverageReadMillis
StoreAverageWriteMillis

logs

• log SQLExceptions

e.g. tablespace is full

that’s all

