

What is Groovy?

“Groovy is like a super version of Java.
It can leverage Java's enterprise capabilities but
also has cool productivity features like closures,
builders and dynamic typing.”

From http://groovy.codehaus.org/

Almost as cool
as me!

Groovy is a light-weight, OO, dynamic programming language that runs
on top of the JVM and has been around since about 2003.

✤ Easy to integrate into any Coherence class that executes custom code

✤ Invocable

✤ EntryProcessor

✤ Aggregator

✤ And many more...

Why use Groovy with Coherence?

✤ Groovy is a dynamic language

Its dynamic,
baby, yeah!

✤ Code does not have to already be deployed into the cluster

✤ Light-weight, single jar file

By dynamic, we mean it has the ability to change the behaviour and
structure of objects at runtime. They allow you to do at runtime what
static languages do at compile time. This can be very powerful but of
course with great power comes great responsibility and overuse or the
wrong use of dynamic features of a language can leave you in a mess.

Groovy has a number of things going for it that make it ideal to integrate
into Coherence. If you are a Java developer (which is highly likely if you
are using Coherence) then the learning curve is low as Groovy's
semantics are a lot like Java. As already mentioned it is dynamic which
means you do not have to have thought of everything before you build
and deploy your cluster. You can do things after the fact without having
to have deployed code. For me when investigating problems in running
clusters this is a massive advantage. Groovy also has a number of quite
cool extensions to the JDK that make it easier to do things in less lines of
code.

Using Groovy with Coherence

There are two ways to use Groovy and Coherence together

✤ Groovy Script embedded in Java code

✤ Use and extend Coherence APIs from Groovy code

You can use Groovy in two ways with Coherence. You can treat it just as
a scripting language and only execute scripts from normal Java code or
you can go the whole hog and use and extend Coherence from within
Groovy code. We will cover both of these in turn.

Groovy Script

✤ Groovy script is supported by the JSR 223 Scripting API

✤ Very easy to integrate Groovy Script into Java and run it

✤ Script is just a String so easy to serialize and send over the wire

Groovy Script is basically a snippet of Groovy code that is executed as a
standalone piece of script from within an application. This can be very
useful for adding dynamic functionality to applications as any ah-hoc
piece of script can be compiled and executed at runtime.

Groovy is one of the languages supported by JSR 223 - the scripting API
so this makes it very easy to execute Groovy Script from within a Java
application.

Obviously there are a number of uses for dynamic script in Coherence.
For me personally, the place I would be most likely to use it would be
when investigating issues or bugs as it allows me to execute code to
query the state of data or Coherence services without having to have
thought up the scenarios I might need in advance. It is always the case
that it is not until I need to investigate an issue with a running cluster
that I wish I had thought of deploying a bit of code - an example would
be when we had corruption of indexes a year or so back and we had no
code on the server side that allowed us to look in detail at what indexes
were present on a node and what data they contained. Using Groovy
Script it would have been much easier.

Running Groovy Script

Running Groovy with the JSR 223 Scripting API

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

String script = "(1..10).sum()"
ScriptEngineManager factory = new ScriptEngineManager();
ScriptEngine engine = factory.getEngineByName("groovy");
Object result = engine.eval(script);

So simple even
Dr Evil could code it

The code above shows how simple it is. We have a String that contains
the Groovy code (in this case we just sum up all the integers from 1 to
10). We then use the Java Scripting API to run the code. In the code above
we end up executing the Groovy script and the return value of 55 is
assigned to the result object.

As you can see Groovy script is just a String and is simple to execute
which makes it very easy to integrate into various parts of Coherence. It
becomes very easy to build a Groovy Script Invocable, EntryProcessor,
Aggregator, in fact many parts of Coherence that execute ad-hoc code
can be integrated with Groovy script.

A Groovy Script Invocable
public class GroovyScriptInvocable extends AbstractInvocable implements PortableObject {
 private String script;

 public GroovyScriptInvocable() {
 }

 public GroovyScriptInvocable(String script) {
 this.script = script;
 }

 @Override
 public void run() {
 try {
 ScriptEngineManager factory = new ScriptEngineManager();
 ScriptEngine engine = factory.getEngineByName("groovy");
 engine.put("invocationService", getService());
 setResult(engine.eval(script));
 } catch (ScriptException e) {
 throw ensureRuntimeException(e, "Error running Groovy script\n" + script);
 }
 }

 @Override
 public void readExternal(PofReader pofReader) throws IOException {
 this.script = pofReader.readString(0);
 }

 @Override
 public void writeExternal(PofWriter pofWriter) throws IOException {
 pofWriter.writeString(0, this.script);
 }
}

Show me
the money!

Code

As an example we will write a Groovy Invocable as this is about as basic
as we can get. All our Invocable needs to do is take a piece of Groovy
script as a parameter, execute the script and return any result.

As you can see it is pretty basic. The run() method does the following
Sets up the scripting engine to execute Groovy script
We then set a script variable into the engine; in this case we add the
InvocationService that is executing the Invocable as a parameter with the
name invocationService. This InvocationService will then be available to
code in the script by using the specified name.
Finally we execute the script and any return value is set as the result of
the Invocable.

Running a Groovy Script Invocable
Running the Groovy Script Invocable is very simple...

Invocable invocable = new GroovyScriptInvocable(script);
InvocationService service = (InvocationService)

CacheFactory.getService("invocation-service");
Object result = service.query(invocable, null);

String script = "CacheFactory.getCluster().getLocalMember().toString()";

Hmmm...

The above code sets a String variable with some Groovy Script - in this
case we are summing the integer values between 1 and 10 (which comes
to 55).
After the call to service.query the result variable will be set to 55.

Looking at the above code you can see it would be equally as simple to
then write a Groovy Script EntryProcessor as the code would be virtually
identical. This time though instead of setting an InvocationService as the
parameter we can pass the InvocableMap.Entry the EntryProcessor is
being invoked against.

Running a Groovy Script Invocable
Running the Groovy Script Invocable is very simple...

String script = "System.exit(0)";
Invocable invocable = new GroovyScriptInvocable(script);
InvocationService service = (InvocationService)

CacheFactory.getService("invocation-service");
Object result = service.query(invocable, null);

Mwa Ha Ha
Ha... !

The above code sets a String variable with some Groovy Script - in this
case we are summing the integer values between 1 and 10 (which comes
to 55).
After the call to service.query the result variable will be set to 55.

Looking at the above code you can see it would be equally as simple to
then write a Groovy Script EntryProcessor as the code would be virtually
identical. This time though instead of setting an InvocationService as the
parameter we can pass the InvocableMap.Entry the EntryProcessor is
being invoked against.

Closures
✤ A Groovy Closure is like a code block
✤ Defined in one place and used later
✤ It is also like a method pointer - so it’s an Object that can be passed around
✤ Like a method it can take parameters and return a result
✤ E.G. a simple closure called printSum that takes two parameters and adds

them together, printing and returning the result
def printSum = { a, b ->
 def result = a+b
 println result
 result
}

Now we have seen how easy it is to use Groovy Script we can get onto
the cooler stuff and integrate Coherence directly into Groovy so that you
can use it from Groovy code. Obviously as Coherence is a Java
application you could use it from Groovy anyway without any changes by
calling the standard API methods. What we are going to look at though is
how we can extend the Coherence API in Groovy to make use of some of
Groovy's cooler features especially Closures.

Closures In Coherence

✤ Dynamic so like Groovy Script the code does not need to be deployed to
the cluster

✤ Closures are good as EntryProcessors and Invocables

✤ Could actually be used anywhere custom code is used in Coherence

✤ Combined with the Groovy Console can make a powerful diagnostic and
“hacking” tool

Like Groovy Script a closure can be very useful in Coherence
If we want to fully integrate Coherence with the Groovy language we
need to make it support Closures

POF Serialize a Closure

✤ Closure implements Serializable

✤ Problem solved in https://github.com/nickman/GroovyMX

✤ Capture ByteCode using the Java Agent API

✤ But... where is the byte code?

As a Groovy Closure is an Object then it should be possible to pass it
into a Coherence cluster

When I started to look at integrating Groovy and Coherence I was vey
pleased to see that the Closure class implements Serializable, so joy of
joys, it should be easy to serialize over the wire to a Coherence cluster.
Well, my joy was to be short lived.

Whilst a Closure is indeed serializable it contains some internal fields
that are not going over the wire and typically may not be Serializable.
After a bit of Googling I found that later versions of Groovy have added a
dehydrate method to a Closure which returns the same closure with
these fields set to null so it can be serialized. Just about every cluster I
have ever worked on uses POF so the next step was to write a POF
serializer that can serialize the Closure.

GroovyClosureSerializer
public class GroovyClosureSerializer extends Base implements PofSerializer {
 DefaultSerializer serializer = new DefaultSerializer(getContextClassLoader());

 @Override
 public void serialize(PofWriter pofWriter, Object o) throws IOException {
 Map<String, byte[]> classBytes = ByteCodeNet.getClassBytes(o.getClass());
 pofWriter.writeMap(1, classBytes);
 Closure serializableClosure = ((Closure)o).dehydrate();
 pofWriter.writeBinary(2, ExternalizableHelper.toBinary(serializableClosure, serializer));
 pofWriter.writeRemainder(null);
 }

 @Override
 public Object deserialize(PofReader pofReader) throws IOException {
 try {
 Map<String,byte[]> byteCode = pofReader.readMap(1, new HashMap<String,byte[]>());
 Binary binary = pofReader.readBinary(2);
 pofReader.readRemainder();

 GroovyClosureClassLoader classLoader = new GroovyClosureClassLoader(getClass().getClassLoader(), byteCode);
 DefaultSerializer defaultSerializer = new DefaultSerializer(classLoader);
 return ExternalizableHelper.fromBinary(binary, defaultSerializer);
 } catch (Exception e) {
 throw ensureRuntimeException(e, "Error deserializing Closure");
 }
 }
}

This is the code for the serializer
Not too complicated
Uses the Coherence DefaultSerializer to take care of the Closure - as this
implements Serializable
Byte code is captured using the GroovyMX ByteCodeNet class then
serialized as the map of byte arrays

Deserialization is the reverse with the addition of a special classloader
that can load the byte code

GroovyClosureClassLoader
public class GroovyClosureClassLoader extends ClassLoader {
 private final Map<String, byte[]> byteCode;
 private final Map<String, Class> classes;

 public GroovyClosureClassLoader(ClassLoader parent, Map<String, byte[]> byteCode) {
 super(parent);
 this.byteCode = byteCode;
 this.classes = new HashMap<String, Class>();
 }

 @Override
 protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
 if (classes.containsKey(name)) {
 return classes.get(name);
 }
 if (byteCode.keySet().contains(name)) {
 return findClass(name);
 }
 return super.loadClass(name, resolve);
 }

 @Override
 protected Class<?> findClass(String name) throws ClassNotFoundException {
 if (byteCode.containsKey(name)) {
 byte[] b = byteCode.get(name);
 Class cls = defineClass(name, b, 0, b.length);
 classes.put(name, cls);
 return cls;
 }
 return super.findClass(name);
 }
}

ClassLoader code - gain not too complicated
Just a normal ClassLoader but loads specific classes from the specified
Map of byte code

GroovyClosureEntryProcessor

✤ Groovy Closure EntryProcessor is very simple.

✤ Takes a Closure as a parameter

✤ Executes the Closure using the cache entry as a parameter

✤ Returns any result

So now we can use Closures in Coherence
Simple example - an EntryProcessor that takes a Closure

GroovyClosureEntryProcessor
public class GroovyEntryProcessor extends AbstractProcessor implements PortableObject
{
 private Closure closure;

 public GroovyEntryProcessor()
 {
 }

 public GroovyEntryProcessor(Closure closure)
 {
 this.closure = closure;
 }

 @Override
 public Object process(InvocableMap.Entry entry)
 {
 return closure.call(entry);
 }

 @Override
 public void readExternal(PofReader pofReader) throws IOException
 {
 closure = (Closure) pofReader.readObject(0);
 }

 @Override
 public void writeExternal(PofWriter pofWriter) throws IOException
 {
 pofWriter.writeObject(0, closure);
 }
}

Code is very easy
Can use the same technique for other Coherence classes such as
Invocables etc...

def cache = CacheFactory.getCache("accounts");
def key = new AccountId("0441234");
def expireClosure = { entry ->
 entry.expire(60000)
};
def processor = new GroovyEntryProcessor(expireClosure);
cache.invoke(key, processor);

Using the Groovy EntryProcessor
✤ Using our GroovyClosureEntryProcessor from Groovy Code...

The clunky way

Now we can properly integrate Coherence into Groovy
Use the Groovy metaClass to add the relevant methods to Coherence
classes at runtime
Now we can use a closure as an EntryProcessor

def cache = CacheFactory.getCache("accounts");
def key = new AccountId("0441234");
cache.invoke(key, { entry ->
 entry.expire(60000)
});

Now it gets cool...

Shagadelic
Baby!

✤ Using our Closure EntryProcessor the Groovy Way...

✤ Use Groovy metaClass to add functionality to Coherence classes

InvocableMap.metaClass.invoke = { Object key, Closure c ->
 invoke(key, new GroovyEntryProcessor(c))
}

✤ We need an invoke method that takes a Closure as a parameter

Now we can properly integrate Coherence into Groovy
Use the Groovy metaClass to add the relevant methods to Coherence
classes at runtime
Now we can use a closure as an EntryProcessor

And Finally...

✤ Write up posted on my blog http://thegridman.com

✤ Groovy Site - http://groovy.codehaus.org/

✤ Last but by no means least...

THANK YOU TO EVERYONE

WHO DONATED AT

http://www.justgiving.com/GridMan

http://www.justgiving.com/GridMan

