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Java & Coherence 
Simon Cook - Sales Consultant, FMW for Financial Services 
with help from 
Adrian Nakon - CMC Markets & Andrew Wilson - RBS 
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Presentation Agenda 

•  An Overview of the Java Memory Management 
•  Java Garbage Collectors 
•  Tuning Garbage Collection for Coherence 
•  The Next Generation Garbage Collector 
•  Questions and Answers 
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Tuning the Underlying Platform is Important 

•  Coherence is extremely fast – even with restricted resources 
•  Operational efficiency has many advantages 

–  Better run-time performance 
–  Fewer resources to manage 
–  Fewer Oracle Coherence licenses to buy 

•  Remember to take a holistic when tuning 
–  The hardware and the operating system 
–  The Java Virtual Machine 
–  Coherence configuration 
–  Application code 
–  Database tuning and optimisation 

Efficiency is the key 
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Tuning the Java Virtual Machine 

•  Current generation JVMs have many tuning options 
–  Some will give small efficiencies 
–  Some will give massive efficiencies 

•  Tuning your GC to minimise pause time will be key 
–  Reduce the number of Full GCs 
–  Reduce the latency overhead of GCs 

•  Long GCs are disastrous for a distributed caches such as Coherence 
•  Understand your latency requirements and work towards them 

•  You will have to make compromises in some way 

Lots and lots and lots of options 
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Generational Garbage Collection 

•  The majority of JVMs use generational collectors 
•  The heap is split into “generations” 

–  Young, newly created objects 
–  Old, longer lived objects 

•  Weak generational hypothesis 
–  Proved by observation and it’s extremely accurate for Java Applications 

•  Most objects are very short lived 
–  80-98% of all newly allocated objects die within a few million instructions 
–  80-98% of all newly allocated objects die before another megabyte has 

been allocated 

Employed by all HotSpot GC algorithms 
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Some Quick Words on Garbage Collectors 

•  There are two classes of GC algorithms in Java 
–  The Throughput Collectors 
–  The Low Pause (latency) Collectors 

•  Throughput collectors are the default 
–  They reorganise the old heap during a collection 
–  They are not suitable for Coherence 

•  CMS is a low pause collector 
–  Aims to keep application pauses to a minimum 
–  Is a suitable collector for Coherence 

•  G1 is still in development – do not use for Coherence today * 

Dealing with the rubbish 
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The Java Heap Layout 
For all collector algorithms 

Old Survivor 1 * Eden * Perm Survivor 2* 

Objects are created here 

Promoted after YGC 

Swapped n times 

Promoted after n swaps 

Old objects live and die here Classes etc. go here 

*  Young Space is composed of Eden and the two Survivor Spaces. 
** Perm Space is going away! 

** 
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Compacted Old Space 
Throughput Collectors – Serial and Parallel (and G1) 

Occupied Space Before FGC 

Free Space Occupied Space After FGC 

Object Allocation Pointer 
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Free Space 

Fragmented Old Space 
CMS Collector 

Occupied Space Before FGC 

Free Space After FGC 

Occupancy Threshold 

Free List 
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“You may think it’s impossible to run large heaps with 
CMS on restricted hardware.  This is simply not true, it’s 
very possible!” 
 
Adrian Nakon 
Coherence Architect, CMC Markets 
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A List of Stop the World Pauses 

1.  Young space collections 
2.  Full GCs – All collectors 
3.  System GCs – Called via JMX or the application 
4.  CMS Initial Mark Phase 
5.  CMS Remark Phase 
6.  CMS Concurrent Mode Failure 

Know your enemy 
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Tuning the CMS Collector 

•  CMS will enable large heaps, even on restricted hardware 
•  CMS is not like the other collectors 

–  Concurrent collections with multiple, small STW pauses 

•  Running with defaults can be fine for small heaps 
•  For larger heaps you need to consider tuning CMS for best results 

•  Should you use NIO or 64 bit JVMs? 
–  CMS can perform very well will large heaps when correctly tuned 
–  NIO has limitations and garbage collection a manual task 

 

The collector of choice for Coherence 
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Tuning the CMS Collector 

•  A different collector is used for the Young Space 
–  The ParNew Collector 

•  The aim is to minimise the STW pauses 
–  The Young Space Collections 
–  The Initial Mark 
–  The Remark 

•  CMS is concurrent and will therefore require CPU 
–  It will compete with your application during collections 

•  It fragments the Old Space 
–  Object allocations are more complicated  

 

Good performance will take some thought 
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Tuning the CMS Collector 

•  It is important to give objects the opportunity to die young 
•  Young Collections are fast and efficient 

–  Only live objects are copied 
–  Most objects will be dead (transient) so it is fast 
–  Space is cleared quickly with minimal application pauses 

•  Sizing the Young ratio is key 
–  Size the survivor spaces appropriately 
–  Configure the Tenuring Threshold appropriately 
–  Think about your cache expiry settings if appropriate (remember backups!) 

 

The Weak Generational Hypothesis 
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Tuning the CMS Collector 

•  Minimise your pause times 
–  The Initial Mark Phase 
–  The Remark Phase 

•  CMS has to scan Young Space to look for relationships 
•  If Young Space is not empty this will take time 
•  You can instruct CMS to wait for a Young GC before starting 
•  An empty Young Space will dramatically reduce marking times 

 

Minimise the marking phases pause times 
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Tuning the CMS Collector 

•  Concurrent Mode Failure 
–  All bets are off 
–  No new objects can be allocated into the Old Space 
–  The heap will be compacted to recover fragmented space 
–  This may take some time, grab a coffee 

•  Sizing your heap correctly is key to avoiding this 
–  Undersized heaps will make CMS work overtime 

•  Allowing objects to die in the young space will help avoid this 
–  Remember The Weak Generational Hypothesis 
–  Most objects die young and can be collected easily 

 

Worst case scenario 
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Recommended Settings 

•  Limited CPU resource results in ... 
–  Fewer JVM’s per server (less possible context switching) 
–  Strive to keep as much garbage out of tenured space as possible 
–  Maximum size of Young Space is limited by Young Gen collection time. 

•  Low latency requirements 
–  Ensure Young gens and CMS operations (mark / remark phases) are tightly 

integrated. 

•  Large data heaps required 
–  Use 64 bit JVM 

•  Every Application is different, do not just rely on the default JVM 
settings 

 

There may be some more, HotSpot has many 
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Recommended Base Settings 

•  -verbose:gc 
•  -XX:+UseConcMarkSweepGC 
•  -XX:+UseParNewGC 
•  -XX:+HeapDumpOnOutOfMemoryError 
•  -XX:HeapDumpPath=coherence/logs/<filename> 
•  -XX:+UseNUMA 

 

Generic JVM settings  
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Recommended Logging Settings 

•  -XX:+PrintGCDetails 
•  -XX:+PrintGCTimeStamps 
•  -XX:+PrintGCDateStamps 
•  -XX:+PrintTenuringDistribution 
•  -Xloggc:/opt/oracle/admin/coherence/logs/<filename> 
 

Logging related JVM settings  
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Recommended CMS Settings 

•  -XX:MaxTenuringThreshold=15 
•  -XX:CMSWaitDuration=300000 
•  -XX:+CMSScavengeBeforeRemark 
•  -XX:CMSInitiatingOccupancyFraction=65 
•  -XX:+UseCMSInitiatingOccupancyOnly 
•  -XX:SurvivorRatio=4 
•  -Xms<x>m –Xmx<x>m -Xmn<y>m 

CMS tuning JVM Settings  
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Sizing your heap 

•  You’re looking for The Goldilocks Heap 
–  Not too small 
–  Not too big 
–  Just right 

•  Profile your applications and it’s object allocation and de-allocation 
–  Coherence – Caches, expiry, processing, proxies, monitoring, etc. 

•  You have control over 
–  Initial and maximum overall heap size 
–  Perm space size 
–  Young space/old space ratio 
–  Survivor spaces/young space ratio 

 

The Goldilocks Heap 
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“If your heap is 80% full after a full GC then your 
application performance will drop off a cliff.” 
 

Andrew Wilson 
Coherence Architect,  RBS 
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Sizing Your Heap 
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Sizing the Young Space 

•  Remember the Weak Generational Hypothesis 
–  The vast majority of objects die very young 

•  Young collections are cheaper than old 
•  You need to meet the following criteria 

– Make the young space large enough so objects die young 
– Do not make the young space too large – long GCs 

•  It’s a balancing act 
– You need to understand your application’s memory profile 

 

If possible, allow objects to die young 
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About Survivor Spaces 

•  Survivor spaces give objects more opportunity to die 
•  You have full control over this 
•  You can set the Survivor Space Ratio 

–  -XX:SurvivorRatio=<n> 

•  You can set the Maximum Tenuring Threshold (number of swaps) 
–  -XX:MaxTenuringThreshold=15 

•  If you get this right 
–  Your young GCs will remain efficient 
–  More objects will die in young 

Wait for short-lived objects to die 
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Tenuring Distributions 

[GC 526703.667: [ParNew 
Desired survivor size 53673984 bytes, new threshold 8 (max 8) 
- age   1:   19709184 bytes,   19709184 total 
- age   2:     382384 bytes,   20091568 total 
- age   3:     435072 bytes,   20526640 total 
- age   4:     486544 bytes,   21013184 total 
- age   5:     725872 bytes,   21739056 total 
- age   6:     541144 bytes,   22280200 total 
- age   7:     741464 bytes,   23021664 total 
- age   8:     523912 bytes,   23545576 total 
: 852844K->26740K(943744K), 0.1001560 secs] 2780990K->1959523K(8283776K), 
0.1003690 secs] [Times: user=0.26 sys=0.00, real=0.10 secs] 
 

The flow of objects through the survivor spaces 
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Tools 

OS Level Tools 
•  sar - ksar 

•  vmstat 

•  iostat 

•  Free 

•  nmon 

 

There are many tools, some free, some not. 

Java Tools 
•  -verbose:gc 

•  gcstat 

•  jvisualvm 

•  jconsole 

 
Log management tools 
•  vi, more, less, grep 

•  GCViewer 

•  Splunk 

•  Logscape 

•  LogMX 

 

Payware Tools 
•  Oracle Enterprise Manager 

•  Wily Introscope (CA) 

•  ITRS Geneos 

•  SL RTView 

•  Evident Clearstone 
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Further Reading 

“A Generational Mostly-concurrent Garbage Collector” by Tony Printezis 
and David Detlefs – The guys who wrote CMS!  

http://labs.oracle.com/techrep/2000/abstract-88.html 

 

Lots of good material out there 
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The Garbage First (G1) Collector 
The next generation HotSpot Collector  

•  CMS Replacement (early access JRE 6 u14 onwards*) 
•  Server “Style” Garbage Collector 
•  Parallel 
•  Mostly Concurrent 
•  Generational 
•  Good Throughput 
•  Compacting 
•  Improved ease-of-use 
•  Predictable (though not hard real-time) 
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Colour Key for Heap Spaces 

Young Generation 
Old Generation 
Recently Copied in Young Generation 
Recently Copied in Old Generation 

Non-Allocated Space 
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Young GCs in CMS 

•  Young generation, split into 
•  Eden 
•  Survivor spaces 

•  Old generation 
•  In-place de-allocation 
•  Managed by free lists 
•  Heap fragmentation 
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Young GCs in CMS 

•  End of young generation GC 
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Young GCs in G1 

•  Heap split into regions 
•  Currently 1MB regions 

•  Young generation 
•  A set of regions 

•  Old generation 
•  A set of regions 
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Young GCs in G1 

•  During a young generation GC 
•  Survivors from the young regions are 

evacuated to: 
•  Survivor regions 
•  Old regions 
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Young GCs in G1 

•  End of young generation GC 
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Summary: Young GCs in G1 

•  Single physical heap, split into regions 
•  Set of contiguous regions allocated for large (“humongous”) objects 

•  No physically separate young generation 
•  A set of (non-contiguous) regions 
•  Very easy to resize 

•  Young GCs 
•  Done with “evacuation pauses” 
•  Stop-the-world 
•  Parallel 
•  Evacuate surviving objects from one set of regions to another 
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Old GCs in CMS (Sweeping After Marking) 

•  Concurrent marking phase 
•  Two stop-the-world pauses 

•  Initial mark 
•  Remark 

•  Marks reachable (live) objects 
•  Unmarked objects are deduced to 

be unreachable (dead) 

CMS 
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Old GCs in CMS (Sweeping After Marking) 

CMS 

•  End of concurrent sweeping phase 
•  All unmarked objects are de-
allocated 
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Old GCs in G1 (After Marking) 

•  Concurrent marking phase 
•  One stop-the-world pause 

•  Remark 
•  (Initial mark piggybacked on an 

evacuation pause) 
•  Calculates liveness information 

per region 
•  Empty regions can be reclaimed 

immediately 
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Old GCs in G1 (After Marking) 

•  End of remark phase 
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Old GCs in G1 (After Marking) 

•  Reclaiming old regions 
•  Pick regions with low live ratio 
•  Collect 

•  Only a few old regions collected 
per such GC 
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Old GCs in G1 (After Marking) 

•  We might leave some garbage 
objects in the heap 

•  In regions with very high live ratio 
•  We might collect them later 
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CMS vs. G1 Comparison 

G1 CMS 
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In Summary 

•  Strive to keep garbage out of Tenured/Old Space 
•  Size young accordingly 

–  Too big and your pauses will be too long 
–  Too small and too much garbage will be tenured 

•  Think about your Survivor Spaces 
–  Allow objects to die young 
–  Look at the object distributions 

•  Synchronise young and old collections with CMS 
•  Overall Heap size is important 

–  Don’t give the GCs too much work to do 

Don’t just accept the defaults, every application differs 
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Q&A 
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