
1 Coherence Special Interest Group Meeting 1st March 2012

Java & Coherence
Simon Cook - Sales Consultant, FMW for Financial Services
with help from
Adrian Nakon - CMC Markets & Andrew Wilson - RBS

2 Coherence Special Interest Group Meeting 1st March 2012

Presentation Agenda

•  An Overview of the Java Memory Management
•  Java Garbage Collectors
•  Tuning Garbage Collection for Coherence
•  The Next Generation Garbage Collector
•  Questions and Answers

3 Coherence Special Interest Group Meeting 1st March 2012

Tuning the Underlying Platform is Important

•  Coherence is extremely fast – even with restricted resources
•  Operational efficiency has many advantages

–  Better run-time performance
–  Fewer resources to manage
–  Fewer Oracle Coherence licenses to buy

•  Remember to take a holistic when tuning
–  The hardware and the operating system
–  The Java Virtual Machine
–  Coherence configuration
–  Application code
–  Database tuning and optimisation

Efficiency is the key

4 Coherence Special Interest Group Meeting 1st March 2012

Tuning the Java Virtual Machine

•  Current generation JVMs have many tuning options
–  Some will give small efficiencies
–  Some will give massive efficiencies

•  Tuning your GC to minimise pause time will be key
–  Reduce the number of Full GCs
–  Reduce the latency overhead of GCs

•  Long GCs are disastrous for a distributed caches such as Coherence
•  Understand your latency requirements and work towards them

•  You will have to make compromises in some way

Lots and lots and lots of options

5 Coherence Special Interest Group Meeting 1st March 2012

Generational Garbage Collection

•  The majority of JVMs use generational collectors
•  The heap is split into “generations”

–  Young, newly created objects
–  Old, longer lived objects

•  Weak generational hypothesis
–  Proved by observation and it’s extremely accurate for Java Applications

•  Most objects are very short lived
–  80-98% of all newly allocated objects die within a few million instructions
–  80-98% of all newly allocated objects die before another megabyte has

been allocated

Employed by all HotSpot GC algorithms

6 Coherence Special Interest Group Meeting 1st March 2012

Some Quick Words on Garbage Collectors

•  There are two classes of GC algorithms in Java
–  The Throughput Collectors
–  The Low Pause (latency) Collectors

•  Throughput collectors are the default
–  They reorganise the old heap during a collection
–  They are not suitable for Coherence

•  CMS is a low pause collector
–  Aims to keep application pauses to a minimum
–  Is a suitable collector for Coherence

•  G1 is still in development – do not use for Coherence today *

Dealing with the rubbish

7 Coherence Special Interest Group Meeting 1st March 2012

The Java Heap Layout
For all collector algorithms

Old Survivor 1 * Eden * Perm Survivor 2*

Objects are created here

Promoted after YGC

Swapped n times

Promoted after n swaps

Old objects live and die here Classes etc. go here

* Young Space is composed of Eden and the two Survivor Spaces.
** Perm Space is going away!

**

8 Coherence Special Interest Group Meeting 1st March 2012

Compacted Old Space
Throughput Collectors – Serial and Parallel (and G1)

Occupied Space Before FGC

Free Space Occupied Space After FGC

Object Allocation Pointer

9 Coherence Special Interest Group Meeting 1st March 2012

Free Space

Fragmented Old Space
CMS Collector

Occupied Space Before FGC

Free Space After FGC

Occupancy Threshold

Free List

10 Coherence Special Interest Group Meeting 1st March 2012

“You may think it’s impossible to run large heaps with
CMS on restricted hardware. This is simply not true, it’s
very possible!”

Adrian Nakon
Coherence Architect, CMC Markets

11 Coherence Special Interest Group Meeting 1st March 2012

A List of Stop the World Pauses

1.  Young space collections
2.  Full GCs – All collectors
3.  System GCs – Called via JMX or the application
4.  CMS Initial Mark Phase
5.  CMS Remark Phase
6.  CMS Concurrent Mode Failure

Know your enemy

12 Coherence Special Interest Group Meeting 1st March 2012

Tuning the CMS Collector

•  CMS will enable large heaps, even on restricted hardware
•  CMS is not like the other collectors

–  Concurrent collections with multiple, small STW pauses

•  Running with defaults can be fine for small heaps
•  For larger heaps you need to consider tuning CMS for best results

•  Should you use NIO or 64 bit JVMs?
–  CMS can perform very well will large heaps when correctly tuned
–  NIO has limitations and garbage collection a manual task

The collector of choice for Coherence

13 Coherence Special Interest Group Meeting 1st March 2012

Tuning the CMS Collector

•  A different collector is used for the Young Space
–  The ParNew Collector

•  The aim is to minimise the STW pauses
–  The Young Space Collections
–  The Initial Mark
–  The Remark

•  CMS is concurrent and will therefore require CPU
–  It will compete with your application during collections

•  It fragments the Old Space
–  Object allocations are more complicated

Good performance will take some thought

14 Coherence Special Interest Group Meeting 1st March 2012

Tuning the CMS Collector

•  It is important to give objects the opportunity to die young
•  Young Collections are fast and efficient

–  Only live objects are copied
–  Most objects will be dead (transient) so it is fast
–  Space is cleared quickly with minimal application pauses

•  Sizing the Young ratio is key
–  Size the survivor spaces appropriately
–  Configure the Tenuring Threshold appropriately
–  Think about your cache expiry settings if appropriate (remember backups!)

The Weak Generational Hypothesis

15 Coherence Special Interest Group Meeting 1st March 2012

Tuning the CMS Collector

•  Minimise your pause times
–  The Initial Mark Phase
–  The Remark Phase

•  CMS has to scan Young Space to look for relationships
•  If Young Space is not empty this will take time
•  You can instruct CMS to wait for a Young GC before starting
•  An empty Young Space will dramatically reduce marking times

Minimise the marking phases pause times

16 Coherence Special Interest Group Meeting 1st March 2012

Tuning the CMS Collector

•  Concurrent Mode Failure
–  All bets are off
–  No new objects can be allocated into the Old Space
–  The heap will be compacted to recover fragmented space
–  This may take some time, grab a coffee

•  Sizing your heap correctly is key to avoiding this
–  Undersized heaps will make CMS work overtime

•  Allowing objects to die in the young space will help avoid this
–  Remember The Weak Generational Hypothesis
–  Most objects die young and can be collected easily

Worst case scenario

17 Coherence Special Interest Group Meeting 1st March 2012

Recommended Settings

•  Limited CPU resource results in ...
–  Fewer JVM’s per server (less possible context switching)
–  Strive to keep as much garbage out of tenured space as possible
–  Maximum size of Young Space is limited by Young Gen collection time.

•  Low latency requirements
–  Ensure Young gens and CMS operations (mark / remark phases) are tightly

integrated.

•  Large data heaps required
–  Use 64 bit JVM

•  Every Application is different, do not just rely on the default JVM
settings

There may be some more, HotSpot has many

18 Coherence Special Interest Group Meeting 1st March 2012

Recommended Base Settings

•  -verbose:gc
•  -XX:+UseConcMarkSweepGC
•  -XX:+UseParNewGC
•  -XX:+HeapDumpOnOutOfMemoryError
•  -XX:HeapDumpPath=coherence/logs/<filename>
•  -XX:+UseNUMA

Generic JVM settings

19 Coherence Special Interest Group Meeting 1st March 2012

Recommended Logging Settings

•  -XX:+PrintGCDetails
•  -XX:+PrintGCTimeStamps
•  -XX:+PrintGCDateStamps
•  -XX:+PrintTenuringDistribution
•  -Xloggc:/opt/oracle/admin/coherence/logs/<filename>

Logging related JVM settings

20 Coherence Special Interest Group Meeting 1st March 2012

Recommended CMS Settings

•  -XX:MaxTenuringThreshold=15
•  -XX:CMSWaitDuration=300000
•  -XX:+CMSScavengeBeforeRemark
•  -XX:CMSInitiatingOccupancyFraction=65
•  -XX:+UseCMSInitiatingOccupancyOnly
•  -XX:SurvivorRatio=4
•  -Xms<x>m –Xmx<x>m -Xmn<y>m

CMS tuning JVM Settings

21 Coherence Special Interest Group Meeting 1st March 2012

Sizing your heap

•  You’re looking for The Goldilocks Heap
–  Not too small
–  Not too big
–  Just right

•  Profile your applications and it’s object allocation and de-allocation
–  Coherence – Caches, expiry, processing, proxies, monitoring, etc.

•  You have control over
–  Initial and maximum overall heap size
–  Perm space size
–  Young space/old space ratio
–  Survivor spaces/young space ratio

The Goldilocks Heap

22 Coherence Special Interest Group Meeting 1st March 2012

“If your heap is 80% full after a full GC then your
application performance will drop off a cliff.”

Andrew Wilson
Coherence Architect, RBS

23 Coherence Special Interest Group Meeting 1st March 2012

Sizing Your Heap

24 Coherence Special Interest Group Meeting 1st March 2012

Sizing the Young Space

•  Remember the Weak Generational Hypothesis
–  The vast majority of objects die very young

•  Young collections are cheaper than old
•  You need to meet the following criteria

– Make the young space large enough so objects die young
– Do not make the young space too large – long GCs

•  It’s a balancing act
– You need to understand your application’s memory profile

If possible, allow objects to die young

25 Coherence Special Interest Group Meeting 1st March 2012

About Survivor Spaces

•  Survivor spaces give objects more opportunity to die
•  You have full control over this
•  You can set the Survivor Space Ratio

–  -XX:SurvivorRatio=<n>

•  You can set the Maximum Tenuring Threshold (number of swaps)
–  -XX:MaxTenuringThreshold=15

•  If you get this right
–  Your young GCs will remain efficient
–  More objects will die in young

Wait for short-lived objects to die

26 Coherence Special Interest Group Meeting 1st March 2012

Tenuring Distributions

[GC 526703.667: [ParNew
Desired survivor size 53673984 bytes, new threshold 8 (max 8)
- age 1: 19709184 bytes, 19709184 total
- age 2: 382384 bytes, 20091568 total
- age 3: 435072 bytes, 20526640 total
- age 4: 486544 bytes, 21013184 total
- age 5: 725872 bytes, 21739056 total
- age 6: 541144 bytes, 22280200 total
- age 7: 741464 bytes, 23021664 total
- age 8: 523912 bytes, 23545576 total
: 852844K->26740K(943744K), 0.1001560 secs] 2780990K->1959523K(8283776K),
0.1003690 secs] [Times: user=0.26 sys=0.00, real=0.10 secs]

The flow of objects through the survivor spaces

27 Coherence Special Interest Group Meeting 1st March 2012

Tools

OS Level Tools
•  sar - ksar

•  vmstat

•  iostat

•  Free

•  nmon

There are many tools, some free, some not.

Java Tools
•  -verbose:gc

•  gcstat

•  jvisualvm

•  jconsole

Log management tools
•  vi, more, less, grep

•  GCViewer

•  Splunk

•  Logscape

•  LogMX

Payware Tools
•  Oracle Enterprise Manager

•  Wily Introscope (CA)

•  ITRS Geneos

•  SL RTView

•  Evident Clearstone

28 Coherence Special Interest Group Meeting 1st March 2012

Further Reading

“A Generational Mostly-concurrent Garbage Collector” by Tony Printezis
and David Detlefs – The guys who wrote CMS!

http://labs.oracle.com/techrep/2000/abstract-88.html

Lots of good material out there

29 Coherence Special Interest Group Meeting 1st March 2012

The Garbage First (G1) Collector
The next generation HotSpot Collector

•  CMS Replacement (early access JRE 6 u14 onwards*)
•  Server “Style” Garbage Collector
•  Parallel
•  Mostly Concurrent
•  Generational
•  Good Throughput
•  Compacting
•  Improved ease-of-use
•  Predictable (though not hard real-time)

30 Coherence Special Interest Group Meeting 1st March 2012

Colour Key for Heap Spaces

Young Generation
Old Generation
Recently Copied in Young Generation
Recently Copied in Old Generation

Non-Allocated Space

31 Coherence Special Interest Group Meeting 1st March 2012

Young GCs in CMS

•  Young generation, split into
•  Eden
•  Survivor spaces

•  Old generation
•  In-place de-allocation
•  Managed by free lists
•  Heap fragmentation

32 Coherence Special Interest Group Meeting 1st March 2012

Young GCs in CMS

•  End of young generation GC

33 Coherence Special Interest Group Meeting 1st March 2012

Young GCs in G1

•  Heap split into regions
•  Currently 1MB regions

•  Young generation
•  A set of regions

•  Old generation
•  A set of regions

34 Coherence Special Interest Group Meeting 1st March 2012

Young GCs in G1

•  During a young generation GC
•  Survivors from the young regions are

evacuated to:
•  Survivor regions
•  Old regions

35 Coherence Special Interest Group Meeting 1st March 2012

Young GCs in G1

•  End of young generation GC

36 Coherence Special Interest Group Meeting 1st March 2012

Summary: Young GCs in G1

•  Single physical heap, split into regions
•  Set of contiguous regions allocated for large (“humongous”) objects

•  No physically separate young generation
•  A set of (non-contiguous) regions
•  Very easy to resize

•  Young GCs
•  Done with “evacuation pauses”
•  Stop-the-world
•  Parallel
•  Evacuate surviving objects from one set of regions to another

37 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in CMS (Sweeping After Marking)

•  Concurrent marking phase
•  Two stop-the-world pauses

•  Initial mark
•  Remark

•  Marks reachable (live) objects
•  Unmarked objects are deduced to

be unreachable (dead)

CMS

38 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in CMS (Sweeping After Marking)

CMS

•  End of concurrent sweeping phase
•  All unmarked objects are de-
allocated

39 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in G1 (After Marking)

•  Concurrent marking phase
•  One stop-the-world pause

•  Remark
•  (Initial mark piggybacked on an

evacuation pause)
•  Calculates liveness information

per region
•  Empty regions can be reclaimed

immediately

40 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in G1 (After Marking)

•  End of remark phase

41 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in G1 (After Marking)

•  Reclaiming old regions
•  Pick regions with low live ratio
•  Collect

•  Only a few old regions collected
per such GC

42 Coherence Special Interest Group Meeting 1st March 2012

Old GCs in G1 (After Marking)

•  We might leave some garbage
objects in the heap

•  In regions with very high live ratio
•  We might collect them later

43 Coherence Special Interest Group Meeting 1st March 2012

CMS vs. G1 Comparison

G1 CMS

44 Coherence Special Interest Group Meeting 1st March 2012

In Summary

•  Strive to keep garbage out of Tenured/Old Space
•  Size young accordingly

–  Too big and your pauses will be too long
–  Too small and too much garbage will be tenured

•  Think about your Survivor Spaces
–  Allow objects to die young
–  Look at the object distributions

•  Synchronise young and old collections with CMS
•  Overall Heap size is important

–  Don’t give the GCs too much work to do

Don’t just accept the defaults, every application differs

45 Coherence Special Interest Group Meeting 1st March 2012

Q&A

46 Coherence Special Interest Group Meeting 1st March 2012

47 Coherence Special Interest Group Meeting 1st March 2012

