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The first system dynamics work did not include the use of causal-loop
diagrams. Feedback structure was portrayed by equations or
stock-and-flow diagrams. Such representations were natural for
engineers. In an attempt to make system dynamics accessible to a wider
range of people, causal-loop diagrams have become increasingly
popular. In many texts and courses they are the first tool described.
Indeed, recently several analysts have proposed that system dynamics
studies can be carried out without the development of formal models at
all (Morecroft 1985; Wolstenholme and Coyle 1983; Wolstenholme
1985). Causal-loop diagrams often figure prominently in such analyses.
Yet even those who advocate the use of qualitative system dynamics are
careful to point out that in all the successful applications of such
qualitative methods the analysts have had extensive experience with
formal model building. Nevertheless, it seems inevitable that people at all
experience levels will continue to rely on causal-loop diagrams.
   In the following paper dating from 1976, George Richardson describes a
variety of problems which often arise in causal-loop diagramming, both in
the development of the diagrams and the explication of behavior from
them. The main difficulties arise because causal-loop diagrams obscure the
stock and flow structure of systems. We sometimes emphasize so heavily the
role of feedback structure in generating behavior that the crucial role of
accumulation processes is lost. Even experienced modelers are easily
misled by causal-loop diagrams. I suggest the following experiment: take
the causal-loop diagram for the family feud described in Richardson's
paper and ask a random sample of system dynamics modelers or students
how it will behave. In my experience, one will not only receive a wide
range of answers but most of these will be incorrect. Then repeat the
experiment using the stock-and-flow diagram (with a different group of
people, obviously). While answers will still vary, the number of correct
responses should rise. In recognition of these difficulties, there has been a
revival of stock-and-flow diagrams as a means of communicating structure
(Morecroft 1982). Richardson's paper should not be taken as an argument
to abandon causal-loop diagrams or qualitative system dynamics,
however. But it serves as a caution to the facile use of an easily abused
technique. Despite their problems, causal-loop diagrams are likely to
remain important tools for the communication of feedback structure.

John D. Sterman, Editor
Introduction

Positive and negative feedback loops are the building blocks of system
dynamics. While a complete specification of the feedback structure of a
system requires specifying levels (states) and rates, the essential
components and interactions in a system can be communicated quickly
and concisely in a causal-loop diagram. The simplicity of causal-loop
diagrams has led to their use in the early stages of model
conceptualization, in introductory curriculum material in system dynamics
from the fifth grade to graduate school, and in presentations of system
dynamics studies in both technical and popular publications.
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Fig. 1. A typical
causal-loop
(influence) diagram
used to define positive
and negative causal
links (influences)

The simplicity of causal-loop diagrams hides a subtlety, however, which
poses problems which have not been adequately acknowledged.
  The crux of the problem with causal-loop diagrams, which this paper
explores in some detail, is that they make no distinction between
information links and rate-to-level links (sometimes called "conserved
flows"). That simplification is usually thought to be one of the advantages
of causal-loop diagrams, but it has a rather dramatic disadvantage: in cases
involving rate-to-level links the standard characterizations of positive and
negative polarities in causal-loop diagrams are false.
  This paper first exposes the difficulties in the traditional definitions of
positive and negative links in causal-loop diagrams. Several possible
improvements are suggested. Loops are then considered, and flaws in their
traditional definitions and characterizations are uncovered, leading to the
conclusion that definitions and characterizations in terms of dynamic
behavior are not possible.
  While the observations in this paper may have some significance for
practicing system dynamicists, particularly in their writings for general
audiences, the paper's major purpose is to clarify ideas important in the
teaching of system dynamics. I should say at the outset that the basic ideas
presented here are not new, most having appeared in some form
previously. However, the seductive simplicity of causal-loop diagrams has
led to general practice which is sometimes too casual and which may lead
to misunderstandings.

Definitions of positive and negative links

Traditional definitions

The following definitions of positive and negative influences in
causal-loop diagrams are representative of the general literature.i

The following figure (Figure 1) shows a possible set of causal
relationships.  The arrows indicate the causal direction of influences.
The signs adjacent to the arrows indicate the polarity. A plus (+) sign
implies that a change in the variable at the end of the arrow will cause a
change in the variable at the top of the arrow in the same direction. ...
Similarly, a minus (-) sign implies that a change in the variable at the
end of the arrow will cause a change in the variable at the top of the
arrow in the opposite direction.
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The arrow from "attractiveness" to "migration" is cited as an example of a
positive influence: "An increase in the attractiveness of the community
increases migration into the community." The arrow from "population" to
"jobs available per capita" is given as an example of a negative influence:
"An increase in the community's population will cause a decrease in the
number of available jobs per capita." The definitions given in this reference
in terms of changes of variables are entirely consistent with the examples
given.
  However, if the positive definition had been applied to another positive
influence in the loop in Figure 1, an inconsistency would have appeared.
Consider the link from migration to population. The definition claims that a
change in migration will produce a change in population in the same
direction, yet a decrease in migration will not produce a decrease in
population unless migration becomes negative, drawing people out of the
city. As long as migration is positive, it will always increase the population
of the community, whether migration itself is increasing or decreasing.
Furthermore, it is not even always true that an increase in migration
produces an increase in population in the loop in Figure 1. Suppose
available jobs per capita is so low that the community is not attractive and
people are migrating out of the city. In such a case, the negative migration
will always decrease the population of the community, whether migration
itself is increasing or decreasing (provided, of course, that the increase in
migration is not enough to make the net migration positive).
  Thus, it can not be said with any certainty that a change in migration in the
loop in Figure 1 will produce a change in population in the same direction.
Part of the problem here is that migration can be interpreted to represent a
net rate (see below), but the real difficulty is much more ubiquitous. The
traditional definitions of positive and negative links in causal-loops fail for
at least one link in most causal-loop diagrams system dynamicists might
draw. In the simple positive loop involving population and births per year,
the link from births to population fails the traditional definition: a decrease
in births per year will not result in a decrease in population, since births can
only increase a population. In the common illustrative negative loop
representing the filling of a beer glass, the link from the rate of beer flow to
the level of beer in the glass fails the traditional definition: here a decrease
in the flow will not produce a decrease in the level of the beer in the glass.
A host of other examples could be described, but the point is clear: the
traditional definitions of positive and negative links fail in a wide variety of
cases.

The source of the problem

The reason that each of these links is inconsistent with the traditional
definitions is that each represents a rate-to-level connection (a "conserved
flow"), while the definitions are applicable only to information links. For a
conserved flow, the variable at the tail of the arrow is the rate of change (the
derivative) of the variable at the head of the arrow. (In some of the loops
mentioned, the variable at the tail is only the positive or negative part of the
derivative, e.g., births per year, deaths per year, and so on, but the
importance of the observation remains the same.) It is an elementary notion
of calculus that the increasing or decreasing nature of the derivative f ’(t)
determines the curvature of the graph of f(t), not whether f(t) is itself
increasing or decreasing.
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Fig. 2. Patterns of
behavior of an
accumulation over
time (the level of
beer in a glass)
affected by different
inflow rates,
illustrating that the
increase or decrease
in the inflow rate
affects only the
curvature of the
graph of the
accumulation, not
whether the
accumulation itself
increases or
decreases

  For example, consider filling a glass of beer. If the rate of flow into the
glass is constant (and positive), the level of beer in the glass over time has
the linear graph shown in Figure 2a. If the rate of flow is increasing, the
level of beer in the glass over time has the upwardly curving graph shown in
Figure 2b, and the beer glass is filling faster and faster (a dangerous
policy). If the rate of flow is decreasing (but still positive), the level of beer
over time would appear as in Figure 2c, where the fill rate sensibly slows as
the level in the glass gets higher.
  The graphs in Figure 2 show that the increasing nature of the level of beer
is not changed by an increase or decrease of the fill rate; only the curvature
changes. The traditional definition fails in the case of this positive link from
the fill rate to the level of beer in the glass precisely because the link
represents a conserved flow. It should be clear that three similar, but
decreasing graphs could be drawn for a negative rate-to-level link such as
the one from deaths per year to population, and a similar conclusion results.
The traditional definitions work for links that represent proportional
relationships, but fail in every case representing accumulations of a rate of
flow.ii

Improved definitions

A possible improvement in the traditional definition of a positive influence
in a causal-loop diagram is the following, which is suggested by the
preceding observations about curvature:

A has a positive influence on B if an increase (decrease) in A results
in a value of B which is greater (less) than it would have been had A
not changed.

 (A similar definition for a negative influence is easy to invent.) In the beer
glass example, an increase in the rate of flow results in a higher level of beer
in the glass than would have resulted had the rate stayed constant (compare
Figures 2b and 2a). Similarly, a decrease in the rate of flow results in a
lower beer level than would have occurred had the rate stayed constant
(compare Figure 2c and 2a). A check shows that the definition behaves
properly in all instances, for information links as well as rate-to-level
connections.
  Although the definition problem is apparently solved by phrasings like
the above, there are undoubtedly instances in which one would not want to
use such a definition.
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Fig. 3. A
causal-loop diagram
distinguishing
between additive
(rate-to-level) links
and proportional
(information) links.
Solid arrows are used
here to identify real
addition and
subtraction
processes

In introductory course material such definitions might initially obscure
more than they clarify. They might also prove too cumbersome in
descriptive writings about system dynamics studies. Furthermore, the
suggested definition tends to hide the reason why the additional wording is
necessary. A second attempt is the following, which acknowledges the
distinction between information links and conserved flows which is at the
heart of the problem:

A has a positive influence on B if A adds to B, or if a change in A
results in a change in B in the same direction.

 Similarly,

A has a negative effect on B if A subtracts from B, or if a change in
A results in a change in B in the opposite direction.

The distinctions made in these definitions is the same one made by different
arrows used in rate/level flow diagrams, in which solid arrows are commonly
used for rate-to-level connections (adding or subtracting) and dotted arrows
are used for information links (Forrester 1961, 67-72). These definitions
suggest that causal-loop diagrams might be improved if two different
symbols were used, acknowledging the two kinds of links.  For example, in
Figure 3, solid and dotted arrows represent, respectively, conserved flows
and information links.
  Some authors naturally make analogous distinctions in the causal-loop
diagrams they display for general readership. In one subtle but effective
variation, straight lines are used for rate-to-level connections, while curved
arrows are reserved for information links. The diagrams are no more
visually complicated than traditional causal-loop diagrams, but they
significantly help the sensitive reader to discern the real structure of the
assumptions in the diagram. A more common technique is exemplified by
the diagrams in Levin, Roberts, and Hirsch (1975) in which rates and levels
are explicitly represented as "valves" and "tubs" while all other connections
are the curved solid arrows of traditional causal-loop diagrams. Each of
these variations is a conscious or unconscious attempt to deal with the
difficulties resulting from representing rate-to-level links in causal-loop
diagrams.
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There are other ways of pursuing the perfect definition for the polarities of
causal links, acknowledging in some way the distinction between a flow and
an information link. The reader may have his own favorite among these
improved definitions. Perhaps different definitions suit different audiences
and purposes. There may even be situations in which the common, flawed
definitions are the most advisable. It is the author's belief, however, that a
sufficient number of confusions can arise from the common definitions in
introductory courses using causal-loop diagrams that an improved definition
such as the second one given above is advisable. A definition drawing the
distinctions between additive and proportional links (between conserved
flows and information links) helps to move a student from elementary
conceptualizations to modeling concepts. Furthermore, it increases the
likelihood that a simple causal-loop diagram can be "read" correctly and its
dynamic behavior to some extent inferred. Unfortunately, while improving
the "readability" of feedback loops, the recognition of rate-to-level links in
causal loops invalidates some of the traditional definitions of the polarity of
causal loops, as the following sections show.

Characterizing positive and negative causal loops

Because system dynamics involves the study of the relationships between
feedback structure and dynamic behavior, there is a great impetus to try to
infer dynamic behavior from representations of structure. That impetus has
apparently led to a set of definitions of the polarities of causal-loops which
are phrased in terms of behavior over time. As with definitions of causal
links, so it is with causal loops: the existence of rate-to-level links invalidates
the traditional definitions of positive and negative loops in causal-loop
diagrams. In this section the difficulties with the traditional definitions are
noted, with the discussion focusing particularly on rate-to-level links, hidden
loops, and net rates. The section ends with a brief analysis of a causal-loop
which, together with the rest of the paper, casts grave doubt on the possibility
of defining the polarity of causal loops in terms of dynamic behavior.

Common definitions

A positive loop is often defined "...by the fact that an initial change in any
factor eventually induces further self-change in the original
direction"(Levin, Roberts, and Hirsch 1975, 7). Representative of the
definitions of negative feedback loops is the following: "When a feedback
loop response to a variable change opposes the original perturbation, the
loop is negative or goal-seeking" (Goodman 1974, 9). The definition of a
negative loop is usually interpreted to mean that "...a change in one element
is propagated around the circle until it comes back to change that element in
a direction opposite to the initial change" (Meadows 1972, 42).
  These definitions lead nicely to the reliable characterizations of a positive
feedback loop as a loop having an even number of negative causal links, and
a negative loop as one having an odd number of negative links. In
causal-loop diagrams drawn without rate-to-level links, these definitions are
completely consistent with the traditional definitions of positive and negative
links discussed in the first section of this paper. Figure 4 shows examples of
a positive loop and a negative loop which are consistent with these
definitions, as the reader can verify by tracing a change in some variable
around each loop.
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Fig. 4. Typical
causal-loop
diagrams used to
illustrate definitions
of loop polarity

It is interesting to note for later reference that these definitions have two
particular implications. First, a positive loop consistent with the definitions
can be traced as either an increasing loop or a decreasing one—in Figure 4a
one would talk about the loop as a "vicious cycle" or a "benign" one
depending on the direction of the initial exogenous change. Second, while
no one intends this conclusion, every negative loop fitting the causal-loop
definition is, by implication, an oscillating structure—an increase, so the
definition says, traced around the loop becomes a decrease, which produces
an increase after another cycle, and that a decrease, and so on, up and down
through time. Oscillations, however, depend on rate/level structure as well as
feedback structure. The fact that not every positive loop and negative loop
behave in these ways suggests that there are problems with the traditional
definitions of the polarity of causal loops, as the following sections on rate-
to-level links, hidden loops, and net rates show. The most persistent problem
here is the urge to define polarities in terms of dynamic behavior: because
behavior depends upon rates and levels, unspecified in causal-loop
diagrams, universally applicable definitions in terms of behavior appear to
be most difficult to invent.

Rate-to-level links

In any loop involving an explicit rate-to-level link, the traditional
definitions of the polarities of feedback loops given above produce
inconsistencies. As an example, consider the elementary population/births
loop shown in Figure 5. Tracing the implications of an increase in
population, no real difficulties arise; the initial change induces “further
self-change in the same direction,” and the loop fits the common
definitions of a positive loop. Suppose, on the other hand, that the initial
change is negative, there is a decrease for some reason in population. Births
per year will decrease, but births will still increase population (though less
rapidly) because the link from births to population is a "flow," a
rate-to-level link. Thus, an initial decrease in population can not be said to
induce further self-change in the same direction. (Note that if the
rate-to-level link is read incorrectly—a decrease in births leads to a decrease
[sic] in population"—the loop fits the definition again. There is a natural
human tendency, it seems, to be more consistent than accurate when one
can't be both.)
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Fig. 5. A positive
feedback loop that
fails the usual
definition of
positive loop
polarity because of
an explicit rate-to-
level link

Fig. 6. Different
representations of
feedback loops
affecting the
growth of a
salesforce,
illustrating hidden
loops and net rates
in causal loop
diagrams

Similarly, difficulties appear in negative loops with explicit rate-to-level
links. In the common population/deaths loop, for example, a decrease in
population is not "...propagated around the circle until it comes back to
change that element in a direction opposite to the initial change." Clearly,
not every positive feedback loop can be meaningfully traced as both an
increasing and a decreasing loop (both "vicious" and "benign"), and not
every negative loop is an oscillator, as the traditional causal-loop definitions
imply. The usual definitions in terms of behavior over time assume that all
links in the loop are of the proportional kind rather than the accumulating,
rate-to-level kind.

Hidden loops

Underscoring the difficulty of defining polarities of causal-loops in terms
of behavior are feedback systems symbolized with hidden (unrepresented)
feedback links. An instructive example is the following salesman loop from
Principles of Systems (Forrester 1967, 2-21 to 2-25). It is common practice,
even in stock-and-flow diagrams, to omit the rate and the minor negative
loop in such exponential smoothing structures, showing only the basic
positive loop summarized in Figure 6b. The hidden loop, however, has
much to do with how such a system behaves over time, thus complicating
the problem of trying to define the polarity of a causal loop in terms of
behavior. Whether the salesforce increases, stays constant, or decreases
depends upon whether "indicated salesforce" is greater than, equal to, or less
than "salesforce," since

hire/fire rate =  
indicated salesforce -  salesforce

time to adjust salesforce
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The relationship between "indicated salesforce" and "salesforce" is solely
determined by the values of three parameters appearing in Figure 6a but
always omitted and unspecified, as in Figure 6b, in a causal-loop diagram of
such a system.iii  The salesforce loop is positive because "indicated
salesforce" enter the rate equation with a positive sign, not because the loop
responds to a change in a certain way. A definition of a positive-loop which
is phrased in terms of the increase of variables in the loop is difficult to
apply—it can not be said with any certainty that a change in any one of the
variables in the causal loop can be traced around the loop to produce
"further self-change in the same direction." Of course, one could (and
should) invoke a ceteris paribus stance when defining the polarity of a
causal-loop, but because of loops like the salesforce loop one is still faced
with definitions of behavior that might not match the actual behavior of the
system because of hidden loops.

Net rates

The salesforce loop in Figure 6 contains a net hire/fire rate, a concept
causing further difficulties for causal-loop diagrams. Because a net rate is
the aggregation of an inflow and an outflow, it is not possible to decide
whether a net rate-to-level link is a positive influence or a negative one.
Consider the net birth rate in an aggregated population model. If net births
per year is positive, births add to population and the loop is a positive loop;
conversely, if net births per year is negative, net births subtract from
population and the loop is a negative loop identical to a population/deaths
loop. Thus, a net rate in a causal-loop creates an undecidable loop—
perhaps positive and perhaps negative, depending upon parameters and
variables not contained in the loop.
  It is interesting to note that the link from a net rate such as net births per
year is commonly thought of and symbolized as a positive link, perhaps
because the word "births" biases the case, but more likely because the
population/births loop behaves like a positive loop when the link is
erroneously thought of as an information link rather than a rate-to-level
link. "If net births per year increase," we say, "then population increases, and
if net births decrease then population decreases [sic]." While such a
statement fits the pattern of the traditional definitions, we know that net
births will decrease population only if the number declines far enough to be
negative, in which case the loop is not positive, but negative. Stock-and-flow
diagrams handle such a case with a double-headed arrow, but no similar
convention has been established for causal-loop diagrams, presumably
because the traditional definitions have obscured the need.
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Fig. 7. Causal-loop
diagram of a feud
between the
Hatfields and the
McCoys

A final example

The presence of rate-to-level links, hidden loops, and net rates in
causal-loop diagrams makes it difficult to define polarity in terms of
behavior. Treating all links as proportional links guarantees that most
inferences of behavior from causal-loop diagrams will be incorrect.
However, recognizing rate-to-level links as well as information links makes
it much more likely (though not certain) that dynamic behavior can be
correctly inferred from causal-loops. The following example shows the
greater reliability obtained by reading rate-to-level links correctly, while
reiterating the inadequacies of the traditional definitions and emphasizing
the dangers of attempting to infer dynamic behavior from the polarity of
causal-loops.
  Consider a family feud. The Hatfields and the McCoys have finally
decided to have it out: Hatfields shoot McCoys, McCoys shoot Hatfields,
and neither side has time to send for cousins from the next ridge to help.
Applying the traditional definitions to the loop shown in Figure 7, we would
conclude that an increase in Hatfields, for example, would lead to more
McCoys being killed by Hatfields, which would lead to fewer McCoys and
fewer Hatfields being killed, which would lead to more Hatfields [sic]—an
increase in Hatfields leading to a further increase in Hatfields. A decrease in
Hatfields could be similarly traced and the conclusion would be the same—
one family increases and one decreases, presumably until it gives up or is
wiped out. But it is silly, of course, to conclude that either family increases
as a result of shooting each other.
  Taking account of the conserved flows in the loop in Figure 7, we
conclude that an increase in Hatfields leads to more McCoys being killed,
which leads to a decrease in the number of McCoys and consequently a
decrease in the number of Hatfields killed by McCoys (as before), which
leads nonetheless to a decrease in the number of Hatfields. An increase in
Hatfields leads to a decrease in Hatfields—such a statement is partly
misleading. Continuing the cycle, we conclude that the decrease in Hatfields
results in fewer McCoys killed by Hatfields, which results in still fewer
McCoys but the drop is not as great now as it was in the previous cycle.
Fewer McCoys kill fewer Hatfields, so the Hatfields decrease, but not as
much as they did the first time around the loop. The loop says that both
Hatfields and McCoys are decreasing, but decreasing less and less rapidly as
time goes on.  We might expect their graphs to look like those in Figure 8.
The system appears to be goal-seeking, with behavior characteristic more of
a negative loop than a positive one.        
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Fig. 8. Apparent
goal-seeking
behavior that can
be inferred from
the conserved
flows implicit in
the feud loop (Fig.
7)

Fig. 9. More typical
feud scenarios in
which one side or
the other is wiped
out, illustrating the
disequilibrating
character of the
positive feud loop

A bit more analysis shows that the Hatfields/McCoys loop has more positive
characteristics than negative ones. Suppose the Hatfields hopelessly
outnumbered the McCoys. The feud would be over rather quickly, and the
graphs might look something like Figure 9a. Or suppose each Hatfield had
a machine gun while the most the McCoys could muster was ten slingshots
for the whole group. Figure 9b shows what we would expect.
  Thus, the graphs in Figure 8, which exhibits goal-seeking behavior
characteristic of a negative loop, are seen to suit a rather special case in
which numbers and firepower balance out. Without additional negative
feedback loops in the model to prevent Hatfields or McCoys from
becoming negative, the scenarios in Figure 9 would continue over time to
show McCoys becoming more and more negative and Hatfields growing!
The loop indeed has the destabilizing character we associate with positive
feedback loops, but not over the meaningful time period of the feud and
not for some initial conditions.iv

  The Hatfields and McCoys example shows quite clearly the extreme
difficulty of defining the polarity of causal-loops in terms of the behavior a
loop is supposed to exhibit in response to changes in its variables. The feud
example also shows that predicting behavior from loop polarity alone
without regard for distinction between rate-to-level links and information
links is impossible.            
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Conclusion

The traditional definitions of the polarities of causal links and loops are
inadequate. With slight modifications taking account of the accumulating
nature of rate-to-level links, the traditional definitions of causal links can be
corrected, with the recognition of conserved flows enhancing the
"readability" of a causal loop. The urge to define the polarities of causal
loops in terms of behavior over time, however, must be resisted. In
particular examples, the destabilizing nature of positive feedback loops and
the goal-seeking character of negative loops can be seen by tracing around
the loop a change in one of its variables. In general, however, the results of
such a change can not be stated with any certainty and with any universal
applicability to all positive or negative loops. The best course of action
appears to be to define clearly the polarity of causal-loops in terms of the
number of negative links in a loop and to let intuitions about the dynamic
implications of those polarities grow as more and more examples are seen
and understood.
  The difficulties of teasing dynamic behavior out of causal-loop diagrams
suggest that people wishing to construct meaningful dynamic models
should either avoid them or use them exceedingly carefully. Since to "read"
them with any reliability requires a recognition of rate-to-level links, a
modeler conceptualizing a system might just as well use a representation
which better acknowledges stock-and-flow structure. While causal-loop
diagrams may have a defensible role in elementary teaching in system
dynamics, their most appropriate place appears to be in expository writing
for public consumption.  In such contexts, descriptions of dynamic
behavior couched in causal-loop terms are backed up by the modeler’s
certain knowledge of how an actual dynamic model behaved when
simulated or solved analytically.
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Notes

i The example cited is from Henize (1971).  See also Goodman (1974, 7& 9), Meadows
(1972, 41-42), Maruyama (1968, 81-82), and Roberts (1975, 2).

ii  Milsum (1968, 29) distinguishes between an accumulating influence and one that is
proportional.

iii  Underlying these observations is the notion of the open-loop, steady-state gain of the
positive loop.  The salesforce level increases, stays constant, or decreases if the gain of
the positive loop is, respectively, greater than, equal to, or less than 1.  Statements about
such gain are really statements about loop dominance.  If the gain is greater than 1, the
positive loop dominates, and if the gain is less than 1, the hidden negative loop
dominates.
iv  If the system shown in Figure 7 is given by

H’(t)= -aM and M’(t)= -bH, (a, b > 0)

where H and M represent numbers of Hatfields and McCoys, then H(t) and M(t) show
pure exponential decay if and only if H0(a)^1/2 = M0(b)^1/2, then H(t) and M(t) are
eventually dominated by terms involving exp ((ab)^1/2), so the system explodes.


