Oxford University Press's
Academic Insights for the Thinking World

Nature vs. nurture: genes strongly influence survival to the oldest ages

In our study analyzing data from the New England Centenarian Study, we found that for people who live to 90 years old, the chance of their siblings also reaching age 90 is relatively small — about 1.7 times greater than for the average person born around the same time. But for people who survive to age 95, the chance of a sibling living to the same age is 3.5 times greater — and for those who live to 100, the chance of a sibling reaching the same age grows to about nine times greater.

At 105 years old, the chance that a sibling will attain the same age is 35 times greater than for people born around the same time. However, this does not mean there are many 105 year old siblings running around. Because getting to such an age is so incredibly rare, just 10 sibships out of a 100 that contain a 105 year old will have another sibling living to that age.

These much higher relative chances of survival likely reflect different and more potent genetic contributions to the rarity of survival being studied, and strongly suggest that survival to age 90 and survival to age 105 are dramatically different phenotypes or traits, with very different underlying genetic influences.

In this study, we analyzed survival data of the families of 1,500 participants in the New England Centenarian Study, the largest study of centenarians and their family members in the world, based at Boston Medical Center. Among those families, we looked at more than 1,900 sibling relationships that contained at least one person reaching the age of 90.

Biking by PublicDomainImages. CC0 via Pixabay.
Biking by PublicDomainImages. CC0 via Pixabay.

These findings advance the idea that genes play a stronger and stronger role in living to these more and more extreme ages and that the combinations of longevity-enabling genes that help people survive to 95 years are likely different from those that help people reach the age of 105, who are about 1,000 times rarer in the population.

Other studies of the determinants of survival to older ages have not found evidence of a powerful genetic effect I believe because they are not being precise about what they call aging, life span, longevity, or even exceptional longevity. For the longest time now, based upon twins’ studies in the 1980s and early ‘90s, various scholars have maintained that 20 to 30 percent of longevity or even life span is due to differences in genes, and that the remainder is due to differences in environment, health-related behaviors or chance events. But the oldest twins in those studies only got to their mid- to late-80’s. Findings from our and other studies of much older (and rarer) individuals show that genetic makeup explains an increasingly greater portion of the variation in how old people live to be, especially for ages rarer than 100 years.

There is considerable inconsistency in the gerontological literature concerning definitions of aging, longevity and life span. The casual use of these terms leads to confusing claims regarding heredity and non-replicated genetic studies. Many researchers equate the term ‘longevity’ with ‘old age,’ and neither term is adequately specific.

Because genes play a much stronger differentiating role in living to 105-plus years, studies of such individuals are much more powerful in discovering longevity-related genes than studies of people in their 90s. Therefore my co-authors and I call for investigators who are studying the determinants of living to the oldest ages to be precise in describing the rarity or percentile of survival that study participants achieve.

Featured image credit: DNA by PublicDomainPictures. CC0 via Pixabay.

Recent Comments

There are currently no comments.