Oxford University Press's
Academic Insights for the Thinking World

A look at the ‘Internet of Things’

Everyday objects are becoming increasingly connected to the Internet. Whether it’s a smart phone that allows you to check your home security, or an app that lets you start your car or close your garage door from anywhere in the world; these technologies are becoming part of what is known as the Internet of Things (IoT). An observable trend is the rapid deployment and consumer use of IoT devices, which can communicate with one another and share information without user input or activity. This trend is evident in the now billions of IoT devices in use by individuals and organizations in public and private sectors. These IoT devices connect people, animals, plants, and objects to the Internet.

People have, and can, become part of the IoT through wearable devices and clothing, including, but certainly not limited to: Garmin Vivoactive, a wearable device that includes, among other features, a global positioning system to track exercise activities; Cityzen Sciences’ D-Shirt that tracks the heart-rate and temperature of a person, as well as the speed and intensity of an individual’s workout; Athos clothing which monitors heart-rate, breathing, and progress of workout and goals; Ralph Lauren’s Polo Tech Shirt designed to monitor the calories burned and the intensity of a workout, stress levels, and heart-rate, among other things; Misfit Shine, a wearable device that tracks adult exercise activities and sleep patterns; Exmovere’s ‘Exmobaby’ that tracks baby’s vital signs, mood, temperature, and movement; and Mimo’s Smart Nursery, which monitors babies’ positons, breathing, and sleeping patterns.

Like humans, animals have been (and can be) connected to the IoT via sensors and wearable devices. For example, the Scout5000 enables the monitoring of pets by providing their owners with an activity pedometer, live streaming of pet activities, and the ability to engage in two-way remote communication with their pet. Similarly to animals, plants are also linked to the IoT via sensors. A case in point are Koubachi sensors that are designed to monitor plants by measuring conditions such as soil moisture and light, for optimal plant growth in individuals’ homes and gardens.

Internet of Things
Image Credit: “The Internet of Things – How the Next Evolution of the Internet Is Changing Everything” by Dave Evans. Source: Cisco IBSG, April 2011. Image used with permission.

In addition to people, animals, and plants, objects are IoT-enabled. These objects can be found in a variety of settings, including homes, work places, and education and healthcare centres. In the home, for example, IoT devices have afforded individuals the opportunity to remotely monitor and control energy use, household appliances, and the security of their homes. An example of an IoT technology used in homes is ‘Netatmo Welcome’. This technology uses cameras with facial recognition software to identify entrants to and/or those within a home. Those identified by the camera, both known and unknown, are sent to the owner’s smartphone. ‘Netatmo Welcome’ keeps a record of those who entered the home and the time and date that they entered. It further provides owners with access to the camera’s live streams and past events. Another area in which IoT devices are used is in healthcare. There are numerous IoT-enabled medical devices that are designed to remotely monitor patients’ vital signs, such as breathing, heartrate, blood pressure, and temperature, and internal functions, such as blood sugar levels. Some IoT medical devices are designed to alert physicians in a timely manner if the patient’s vital signs or internal functions are abnormal to prevent harm or even death of a patient.

The purpose of connecting people, animals, plants, and objects to the Internet is to enable their remote, real-time monitoring and the vast collection, storage, usage, and sharing of information about them in order to provide a service to the user. Ultimately, the automation capabilities of the IoT are designed to improve efficiency of actions and activities. IoT devices benefit the user by saving money and time, improving quality of life, and increasing convenience. For medical devices, these benefits can include lowered costs of care, improved quality of care, and improved outcomes for patients. These benefits and conveniences, however, come at a cost: namely to security and privacy. Overall, IoT devices were not built with security or consumer privacy in mind. Accordingly, measures are needed to ensure that these devices and the data they collect are protected from cyberattacks and unauthorized access, monitoring, sharing, and use, to ensure that we can use IoT devices to our advantage and not to our detriment.

Featured Image Credit: “Network – Internet of Things”, by jeferrb. CCO Public Domain via Pixabay.

Recent Comments

There are currently no comments.